nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 01, v.36 15-20
眼球运动对特发性颅高压视神经蛛网膜下腔的影响
基金项目(Foundation): 载人航天工程航天医学实验领域项目(ES-2-NO.0037,HYZHXM01014;ES-2-NO.0040,HYZHXM01003); 国家自然科学基金重点项目(NO.82130029,82301196,8230040472)
邮箱(Email): wningli@vip.163.com;
DOI: 10.16289/j.cnki.1002-0837.2025.01003
摘要:

目的 选取特发性颅高压患者作为航天飞行相关神经-眼部综合征的地面模型进行眼动操干预实验,探索眼球运动是否具有减小视神经蛛网膜下腔的作用。方法 对符合纳入标准的23名特发性颅高压患者进行病史采集,收集全身基本情况数据,包括年龄、身高、体重、血压,并进行基线数据采集,包括眼压(卧位)及经眶B超视神经鞘复合体图像采集。然后对受试者进行眼动操干预,并在干预后10 min、30 min及3 d后再次测量眼压(卧位),进行经眶B超视神经鞘复合体图像采集。结果 纳入的23名受试者平均年龄(29.58±11.25)岁,平均体重指数为(28.56±6.3)kg/m2,平均腰穿脑脊液压力为(310.25±20.78)mm H2O。受试者在眼动操干预前及干预后各时间点眼压无明显改变(P=1.000);球后3 mm及5 mm处视神经直径无明显改变(P=1.000)。球后5 mm处视神经鞘直径、球后3 mm及5 mm处视神经蛛网膜下腔宽度及球后3~5 mm视神经蛛网膜下腔面积在进行10 min眼动操及30 min眼动操后减小,进行3 d眼动操后回到基线水平,各时间点比较差异具有显著性(P <0.05);与基线值相比,进行30 min眼动操后球后5 mm处视神经鞘直径减小0.33 mm[95%CI(0.034,0.624),P=0.02],球后3 mm及5 mm处视神经蛛网膜下腔宽度分别减小0.2 mm[95%CI(-0.037,0.452),P=0.034]、0.29 mm[95%CI(-0.265,0.344),P=0.01],球后3~5 mm视神经蛛网膜下腔面积减小0.21 mm2[95%CI(0.155,0.762),P=0.02]。结论 本研究初步提出了一种可以使球后视神经蛛网膜下腔间隙减小的眼球运动方法(眼动操),包括眼球运动的方向、时间、节奏及频率,发现通过一定时间有规律的眼球运动可以使视神经鞘发生形变,挤压球后视神经蛛网膜下腔,并使其间隙变窄,随着眼动操运动时间、次数增加,视神经蛛网膜下腔宽度或面积减小的幅度增大,但眼动操不能长时间维持视神经鞘的形变量,一定时间之后,视神经鞘间隙恢复到基线水平。

Abstract:

Objective In this study, patients with idiopathic intracranial hypertension(IIH) were selected as a model for spaceflight-associated neuro-ocular syndrome(SANS) to conduct an eye movement manipulation intervention experiment. The aim was to explore whether eye movements have an effect on reducing the subarachnoid space around the optic nerve. Methods Twenty-three patients with IIH who met the inclusion criteria were subjected to history taking, collection of basic systemic data including age, height, weight, and blood pressure, and baseline data collection including intraocular pressure(prone) and transorbital ultrasound optic nerve sheath complex image acquisition. The subjects were then subjected to the eye movements intervention and IOP(prone) and transorbital ultrasound optic nerve sheath complex image acquisition were measured at 10 minutes, 30 minutes and again 3 days after the intervention.Results The study enrolled 23 subjects with an average age of(29.58 ± 11.25) years and a mean BMI of(28.56 ± 6.3)kg/m2. The average cerebrospinal fluid pressure through lumbar puncture was(310.25 ± 20.78) mmH2O. There were no significant changes in intraocular pressure at various time points before and after the eye movement exercises(P = 1.000).Similarly, there were no significant changes in the diameter of the optic nerve at 3 mm and 5 mm posterior to the globe(P = 1.000). However, the diameter of the optic nerve sheath at 5 mm posterior to the globe, as well as the width of the subarachnoid space of the optic nerve at 3 mm and 5 mm posterior to the globe, and the area of the subarachnoid space of the optic nerve from 3 mm to 5 mm posterior to the globe, all decreased significantly after performing eye movement exercises for 10 minutes and 30 minutes. These measures returned to baseline levels after three days of eye movement exercises, with significant differences observed across time points(P < 0.05). Specifically, compared to baseline values, the diameter of the optic nerve sheath at 5 mm posterior to the globe decreased by 0.33 mm(95% CI: 0.034-0.624, P = 0.02) after performing 30 minutes of eye movement exercises. Additionally, the width of the subarachnoid space of the optic nerve at 3 mm and 5 mm posterior to the globe decreased by 0.2 mm(95% CI:-0.037-0.452, P = 0.034) and 0.29 mm(95% CI:-0.265-0.344, P = 0.01), respectively. Finally, the area of the subarachnoid space of the optic nerve from 3 mm to 5 mm posterior to the globe decreased by 0.21 mm2(95% CI: 0.155-0.762, P = 0.02). Conclusion This study initially proposes an eye movement manipulation method(eye movement exercise) that can reduce the subarachnoid space gap of the optic nerve posterior to the globe, including the direction, duration, rhythm, and frequency of eye movements. It was found that regular eye movements for a certain period of time can deform the optic nerve sheath, compress the subarachnoid space of the optic nerve posterior to the globe, and narrow its gap. As the duration and frequency of eye movement exercises increase, the width or area of the subarachnoid space of the optic nerve decreases more significantly. However, eye movement exercises cannot maintain the deformation of the optic nerve sheath for a long time, and after a certain period of time, the gap of the optic nerve sheath returns to baseline levels.

参考文献

[1] Mader TH, Gibson CR, Pass AF, et al. Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight[J]. Ophthalmology, 2011,118(10):2058-2069.

[2] Taibbi G, Cromwell RL, Kapoor KG, et al. The effect of microgravity on ocular structures and visual function:a review[J]. Surv Ophthalmol, 2013, 58(2):155-163.

[3] Li Z, Yang Y, Lu Y, et al. Intraocular pressure vs intracranial pressure in disease conditions:A prospective cohort study(Beijing iCOP study)[J]. BMC Neurol, 2012, 12(1):66.

[4] Wang N, Xie X, Yang D, et al. Orbital cerebrospinal fluid space in glaucoma:the Beijing intracranial and intraocular pressure(iCOP)study[J]. Ophthalmology, 2012, 119(10):2065-2073, e2061.

[5] Yang D, Fu J, Hou R, et al. Optic neuropathy induced by experimentally reduced cerebrospinal fluid pressure in monkeys[J].Invest Ophthalmol Vis Sci, 2014, 55(5):3067-3073.

[6] Ren R, Jonas JB, Tian G, et al. Cerebrospinal fluid pressure in glaucoma:a prospective study[J]. Ophthalmology, 2010, 117(2):259-266.

[7] Ren R, Wang N, Zhang X, et al. Cerebrospinal fluid pressure correlated with body mass index[J]. Graefes Arch Clin Exp Ophthalmol, 2012, 250(3):445-446.

[8] Jonas JB, Wang N. Association between arterial blood pressure,cerebrospinal fluid pressure and intraocular pressure in the pathophysiology of optic nerve head diseases[J]. Clin Experiment Ophthalmol, 2012, 40(4):e233-234.

[9] Wang N, Yang D, Jonas JB. Low cerebrospinal fluid pressure in the pathogenesis of primary open-angle glaucoma:epiphenomenon or causal relationship? The Beijing Intracranial and Intraocular Pressure(iCOP)study[J]. J Glaucoma, 2013, 22(Suppl 5):S11-12.

[10] Xie Y, Yang D, Huang AS, et al. Retinal microvasculature is a potential biomarker for acute mountain sickness[J]. Sci China Life Sci, 2023, 66(6):1290-1302.

[11] Anderson AP, Butterfield JS, Subramanian PS, et al. Intraocular pressure and cardiovascular alterations investigated in artificial gravity as a countermeasure to spaceflight-associated neuro-ocular syndrome[J]. J Appl Physiol, 2018, 125:567-576.

[12] Behrman S. Pathology of papilloedema[J]. Brain, 1966, 89(1):1.

[13] Liu D, Kahn M. Measurement and relationship of subarachnoid pressure of the optic nerve to intracranial pressures in fresh cadavers[J]. Am J Ophthalmol, 1993, 116(5):548-556.

[14] Killer HE, Jaggi GP, Flammer J, et al. Cerebrospinal fluid dynamics between the intracranial and the subarachnoid space of the optic nerve:Is it always bidirectional?[J]. Brain, 2007, 130(Pt 2):514-520.

[15] Hayreh SS. Pathogenesis of optic disc edema in raised intracranial pressure[J]. Prog Retin Eye Res, 2016, 50:108-144.

[16] Xie Y, Fu Y, Shao Y, et al. Quantitative ultrasound image assessment of the optic nerve subarachnoid space during 90-day head-down tilt bed rest[J]. NPJ Microgravity, 2024, 10(1):9.

[17] Clark RA, Suh SY, Caprioli J, et al. Adduction-induced strain on the optic nerve in primary open-angle glaucoma at normal intraocular pressure[J]. Curr Eye Res, 2020:1-11.

[18] Society H. Classification and diagnostic criteria for headache disorders[S]. Cranial Neuralgia,1991.

[19] Marshall-Goebel K, Macias BR, Laurie SS, et al. Mechanical countermeasures to headward fluid shifts[J]. J Appl Physiol(1985),2021, 130(6):1766-1777.

[20]傅楹迪,谢媛,王宁利.脑脊液动力学与视神经损伤疾病病理生理机制的关系[J].国际眼科纵览,2023,47(5):392-399.

基本信息:

DOI:10.16289/j.cnki.1002-0837.2025.01003

中图分类号:R856.74

引用信息:

[1]傅楹迪,谢媛,邵雅琪等.眼球运动对特发性颅高压视神经蛛网膜下腔的影响[J].航天医学与医学工程,2025,36(01):15-20.DOI:10.16289/j.cnki.1002-0837.2025.01003.

基金信息:

载人航天工程航天医学实验领域项目(ES-2-NO.0037,HYZHXM01014;ES-2-NO.0040,HYZHXM01003); 国家自然科学基金重点项目(NO.82130029,82301196,8230040472)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文