18 | 0 | 11 |
下载次数 | 被引频次 | 阅读次数 |
目的 针对航天服月尘防护需求,探索研究织物纤维材料表面特性对材料表面月尘吸附的影响规律。方法 设计一种月尘吸附实验装置,利用该装置在真空和辐照条件下开展纤维材料模拟月尘吸附特性的研究实验,根据显微镜下观察结果分析纤维材料导电特性、表面能特性对材料表面月尘吸附的影响。结果 紫外辐照能够使模拟月尘充电活化,纤维表面月尘吸附量增加;降低纤维材料表面能或提高纤维材料导电特性均有利于减少纤维材料表面月尘吸附。结论 真空辐照环境下,月尘与纤维材料之间的吸附力以库仑力为主,通过提高纤维材料表面的导电特性,更有利于减少纤维表面月尘吸附。
Abstract:Objective The effect of lunar dust adhesion performance by fiber surface characteristics were investigated for the lunar dust adhesion mitigation of spacesuits. Methods In this research, an adhesion test method under ultraviolet ray radiation in vacuum was developed to measure the adhesion quantity of simulated lunar dust on fiber materials. Based on the microscopic image of the fiber sample after test, the influence of conductive and surface energy characteristics of the fiber materials on the lunar dust adhesion performance was studied. Results The simulated lunar dust were activated under ultraviolet ray radiation, which induced an increase of the adhesion quantity of simulated lunar dust on fiber materials;Lower surface energy or higher conductive characteristics of the fiber was both beneficial to reduce the adhesion quantity of simulated lunar dust. Conclusion The static electric forces were likely to be the major forces between the fiber and the lunar dust under ultraviolet ray radiation in vacuum. In addition to reducing surface energy, improving conductive characteristics of the fiber was more beneficial to reduce the adhesion quantity of simulated lunar dust.
[1] Gaier JR. The effects of lunar dust on EVA systems during the Apollo missions[R/OL].[2024-12-19]. https://www.nasa.gov/wp-content/uploads/static/history/alsj/tm-2005-213610.pdf.
[2] Walton OR. Adhesion of lunar Dust[R/OL].[2024-12-19]. https://ntrs.nasa.gov/citations/20070020448.
[3]石晓波,李运泽,黄勇等.月尘/月壤环境效应地面模拟方法研究[J].空间科学学报,2007,27(1):66-71.
[4] Manyapu KK, Leon PD, Peltz L, et al. Proof of concept demonstration of novel technologies for lunar spacesuit dust mitigation[J]. Acta Astronautica, 2017, 137(2017):472-481.
[5]王志浩,白羽,田东波,等.模拟月尘颗粒真空辐射条件下粘附力测试技术研究[J].装备环境工程,2015,12(3):75-79.
[6] Gaier JR, Sechkar EA. Lunar simulation in the lunar dust adhesion bell jar[R]. 45th AIAA Aerospace Sciences Meeting, 2007:214704.
[7] Paul C, Jason V, Todd S, et al. Lunar environment test system(LETS)system development[R/OL].[2024-12-25]. https://ntrs.nasa.gov/citations/20090025947.
[8]贺小兵,周少奇.模拟月壤研制及其性质初探[J].应用化工,2010,47(8):12-16.
[9] Li CL, Hao H, Yang MF. Characteristics of the lunar samples returned by Chang’E-5 mission[J]. National Science Review, 2021:188-197.
[10]李猛,杨洪瑞,刘洪静,等.金属化处理对杂环芳纶纤维力学性能的影响[J].印染,2021,39(8):1218-1221.
[11] Buhler CR, Calle CI, Nowicki AW, et al. Charge decay characteristics of the JSC Mars-1 martian regolith simulant[C]. 39th Space Congress, 2002.
[12] Champlain A, Matéo-Vélez JC, Roussel JF, et al. Lunar dust simulant charging and transport under UV irradiation in vacuum:Experiments and numerical modeling[J]. Journal of Geophysical Research:Space Physics, 2016,121:103-116.
[13] Wang X, Schwan J, Hsu HW, et al. Dust charging and transport on airless planetary bodies[J]. Geophysical Research Letters, 2016, 43:6103-6110.
[14] Colwell JE, Robertson SR. Lunar surface:dust dynamics and regolith mechanics[J]. Rev Geophys, 2007, 45:315-328.
[15] Manka RH. Plasma and potentials at the lunar surface, in photons and particle interactions with surfaces in space[J]. Astrophysics and Space Science Library, 1973, 37:347-361.
[16] Feuerbacher B, Anderegg M, Fitton B. Photoemission from lunar surface fines and the lunar photoelectron sheath[J]. Proc Third Lunar Planet Sci Conf, 1972, 3:2655-2663.
[17] Katzan CM, Jonathan LE. Lunar dust transport and potential interractions with power system components[R/OL].[2024-12-29].https://ntrs.nasa.gov/citations/19920002733.
[18]张海燕,王晓,李思新,等.铝金属基底月尘被动防护表面研究[J].空间电子技术,2022,19(6):85-90.
基本信息:
DOI:10.16289/j.cnki.1002-0837.2025.02005
中图分类号:V445.3
引用信息:
[1]杨洪瑞,王荣青,陈书赢等.纤维材料月尘吸附特性研究[J].航天医学与医学工程,2025,36(02):112-117.DOI:10.16289/j.cnki.1002-0837.2025.02005.
基金信息:
中国载人航天工程资助项目