浙江大学数学科学学院;浙江大学理学部图像处理研发中心;浙江大学生物医学工程教育部重点实验室;浙大城市学院信息与电气工程学院;浙江大学医学院附属第一医院;浙江求是数理医学研究院;
人工智能理论与技术在医学影像辅助诊断应用中非常重要。本文首先介绍了该细分领域的概况,同时阐述了人工智能的符号主义、连接主义、行为主义和统计主义4个学派以及深度学习、强化学习、迁移学习的主要思想与特点。然后,详细介绍了关于人工智能理论与技术应用于医学影像辅助诊断的代表性研究成果,并且对产品转化应用进行统计分析,举例说明大样本、多中心的医学影像数据库建设的重要性。最后,从人工智能学派、学习方法和医学影像数据库3个层面指出当前存在的问题,并给出未来的发展方向,为研发智能医学影像辅助诊断设备提供参考意见。
7,630 | 48 | 152 |
下载次数 | 被引频次 | 阅读次数 |
[1]中国电子技术标准化研究院.人工智能标准化白皮书2018版[R].北京:中国电子技术标准化研究院,2018.China Institute of Electronic Technology Standardization.Standard white book of artificial intelligence in 2018 version[R].Beijing:China Institute of Electronic Technology Standardization,2018.
[2]邱陈辉.对深度学习在医学图像中应用的思考[J].中国计算机学会通讯,2018,14(8):17-19.Qiu CH.Thoughts of applications of deep learning in medical images[J].Communications of China Computer Federation,2018,14(8):17-19.
[3]上海交通大学人工智能研究院,上海市卫生和健康发展研究中心,上海交通大学医学院等.中国人工智能医疗白皮书[R].上海:上海交通大学,2019.Institute of Artificial Intelligence of Shanghai Jiao Tong U-niversity,Shanghai Health and Health Development Research Center,Shanghai Jiao Tong University School of Medicine,et al.White book of medical artificial intelligence in China[R].Shanghai:Shanghai Jiao Tong University,2019.
[4]工业互联网创新中心(上海)有限公司,36氪研究院,中国信息通信研究院云计算与大数据研究所.2020人工智能医疗产业发展蓝皮书[R].上海:工业互联网创新中心(上海)有限公司,2020.Shanghai industrial Internet Innovation Center limited company,36 krypton Institute,Institute of Cloud Computing and Big Data of China Academy of Information and Communications Technology.Blue Book of industrial development of medical artificial intelligence in 2020[R].Shanghai:Shanghai industrial Internet Innovation Center limited company,2020.
[5]Criminisi A.Machine learning for medical image analysis[J].Medical Image Analysis,2016,33:91-93.
[6]Zhou SK,Greenspan H,Davatzikos,et al.review of deep learning in medical imaging:Image traits,technology trends,case studies with progress highlights,and future promises[J].ar Xv.ori g,2020.https://arxiv.org/abs/2008.09104
[7]Shen DG,Wu GR,Suk H.Deep learning in medical image analysis[J].Annual Review of Biomedical Engineering,2017,19:221-248.
[8]施俊,汪琳琳,王珊珊等.深度学习在医学影像中的应用综述[J].中国图象图形学报,2020,25(10):1953-1981.Shi J,Wang LL,Wang SS,et al.Applications of deep learning in medical imaging:survey[J].Journal of Image and Graphics,25(10):1953-1981.
[9]Litjens G,Kooi T,Bejnordi BE,et al.survey on deep learning in medical image analysis[J].Medical Image A-nalysis,2017,42:60-88.
[10]Wang J,Zhu HD,Wang SH,et al.review of deep learning on medical image analysis[J].Mobile Networks and Applications,2020,11:1-30.
[11]Ker J,Wang L,Rao J,et al.Deep learning applications in medical image analysis[J].IEEE Access,2018,6:9375-9389.
[12]Renard F,Guedria S,De PN,et al.Variability and reproducibility in deep learning for medical image segmentation[J].Scientific Reports,2020,10:13724-1-16.
[13]Haskins G,Kruger U,Yan P.Deep learning in medical image registration:survey[J].Machine Vision and Applications,2020,31(8):1-18.
[14]Fu YB,Lei Y,Wang TH,et al.Deep learning in medical image registration:Areview[J].ar Xv.ori g,2019.https://arxiv.org/abs/1912.12318v1
[15]刘士远,萧毅.基于深度学习的人工智能对医学影像学的挑战和机遇[J].中华放射学杂志,2017,51(12):899-901.Liu SY,Xiao Y.The challenges and opportunities for artificial intelligence to medical imageology based on deep learning[J].Chinese Journal of Radiology,2017,51(12):899-901.
[16]萧毅,刘士远.医学影像人工智能进入深水区后的思考[J].中华放射学杂志,2019,53(1):2-5.Xiao Y,Liu SY.Thoughts of medical imaging artificial intelligence entering deep water area[J].Chinese Journal of Radiology,2019,53(1):2-5.
[17]黄铁军.电脑传奇(中篇):智能之争[J].中国计算机学会通讯,2017,13(1):61-66.Huang TJ.The legend of ebrain (II):the conflict on intelligence[J].Communications of China Computer Federation,2017,13(1):61-66.
[18]尼克.人工智能的起源[J].中国计算机学会通讯,2016,12(3):38-44.Ni K.The origin of artificial intelligence[J].Communications of China Computer Federation,2016,12(3):38-44.
[19]张钹,朱军,苏航.迈向第三代人工智能[J].中国科学:信息科学,2020,50(9):1281-1302.Zhang B,Zhu J,Su H.Toward the third generation of artificial intelligence[J].Scientia Sinica Informations,2020,50(9):1281-1302.
[20]戴维·阿兰·格里尔.人工智能之争[J].中国计算机学会通讯,2015,11(9):59-61.Grier DA.The conflict of artificial intelligence[J].Communications of China Computer Federation,2015,11(9):59-61.
[21]Nilsson NJ.The quest for artificial intelligence:history of ideas and achievements[M].Cambridge,UK:Cambridge University Press,2010:52-78.
[22]周志华.机器学习:发展与未来[J].中国计算机学会通讯,2017,13(1):44-51.Zhou ZH.Machine learning:development and future[J].Communications of China Computer Federation,2017,13(1),pp:44~51.
[23]周志华.机器学习[M].北京:清华大学出版社,2016:97-290.Zhou ZH.Machine learning[M].Beijing:Tsinghua University Press,2016:97-290.
[24]Ackley D,Hinton G,Sejnowski T.learning algorithm for boltzmann machines[J].Cognitive Science,1985,9(1):147-169.
[25]Cortes C,Vapnik V.1995.Support-vector networks[J].Machine learning,20(3):273-297.
[26]Yoav F,Robert E.Schapire.decision-theoretic generalization of on-line learning and an application to boosting[C]//Proceedings of the Second European Conference on Computational Learning Theory,1995,23-37.
[27]吴鹤龄,崔林.图灵和ACM图灵奖[M].第五版.北京:高等教育出版社,2016:45-331.Wu HL,Cui L.Turing and ACM Turing Award[M].Fifth Edition.Beijing:Higher Education Press,2016:45-331.
[28]Hinton GE,Salakhutdinov RR.Reducing the Dimensionality of Data with Neural Networks[J].Science,2006,313(5786):504-507.
[29]Hinton GE,Osindero S,Y-W.The fast learning algorithm for deep belief nets[J].Neural Computation,2006,18:1527-1554.
[30]Goodfellow I,Bengio Y,Courville A.Deep learning[M].boston,US:MIT Press,2015:485-716.
[31]Silver D,Huang A,Maddison J,et al.Mastering the game of Go with deep neural networks and tree search[J].Nature,2016,529(7587):484-489.
[32]Srivastava N,Hinton GE,Krizhevsky A,et al.Dropout:simple way to prevent neural networks from overfitting[J].Journal of Machine Learning Research,15(1):1929-1958.
[33]Hinton GE,Srivastava N,Krizhevsky A,et al.Improving neural networks by preventing co-adaptation of feature detectors[J].Arxiv Org,2012.
[34]中国计算机学会.2013-2014中国计算机科学技术发展报告[M].北京:机械工业出版社,2014:119-138.China Computer Federation.Development Report of 2013-2014 Computer Science and Technology in China[M].Beijing:China Machine Press,2014:119-138.
[35]高阳,王皓,陈兴国.强化学习[J].中国计算机学会通讯,2009,5(8):42-50.Gao Yang,Wang Hao,Chen Xingguo.Reinforcement learning[J].Communications of China Computer Federation,2009,5(8):42-50.
[36]Ormoneit D,Sen S.Kernel-based reinforcement learning[J].Machine Learning,2002,49(2):161-178.
[37]中国计算机学会.2015-2016中国计算机科学技术发展报告[M].北京:机械工业出版社,2016:211-262.China Computer Federation.Development Report of 2015-2016 Computer Science and Technology in China[M].Beijing:China Machine Press,2016:211-262.
[38]杨强,童咏昕.迁移学习:回顾与进展[J].中国计算机学会通讯,2018,14(9):36-42.Yang Q,Tong YX.Transfer learning:retrospect and prospect[J].Communications of China Computer Federation,2018,14(9):36-42.
[39]Pan SJ,Yang Q.survey on transfer learning[J].IEEETransactions on Knowledge and Data Engineering,2010,22(10):1345-1359.
[40]Hong XB,Wong P,Liu DW.Lifelong machine learning:outlook and direction[C]//The 2nd International Conference on Big Data Research,Weihai,2018:76-79.
[41]Anthes G.Lifelong learning in artificial neural networks[J].Communications of The ACM,2019,62(12):13-15.
[42]Chen ZY,Liu B.Lifelong machine learning[M].Second Edition.California,US:Morgan Claypool Publishers,2018:28-104.
[43]Lewis TG,Denning PJ.Learning machine learning[J].Communications of The ACM,2018,61(12):24-27.
[44]中国计算机学会.2018-2019中国计算机科学技术发展报告[M].北京:机械工业出版社,2019:180-244.China Computer Federation.Development Report of 2018-2019 Computer Science and Technology in China[M].Beijing:China Machine Press,2019:180-244.
[45]中国计算机学会.2019-2020中国计算机科学技术发展报告[M].北京:机械工业出版社,2020:541-578.China Computer Federation.Development Report of 2019-2020 Computer Science and Technology in China[M].Beijing:China Machine Press,2020:541-578.
[46]Finn C,Abbeel P,Levine S.Model-agnostic meta-learning for fast adaptation of deep networks[C]//Proceedings of the 34th International Conference on Machine Learning,2017,70:1126-1135.
[47]Wang YQ,Yao QM,Kwork JT,et al.Generalizing from Few Examples:A Survey on Few-shot Learning[J].ACM Computing Surveys,2020,53(3):63:1-34.
[48]Dong HW,Zou B,Zhang LM,et al.Automatic design of CNNs via differentiable neural architecture search for PolSAR image classification[J].IEEE Transactions on Geoscience and Remote Sensing,2020,58(9):6362-6375.
[49]Gulshan V,Peng L,Coram M,et al.Development and validation of deep Learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J].Journal of the American Medical Association,2016,316(22):2402-2410.
[50]Esteva A,Kuprel B,Novoa A,et al.Dermatologist-level classification of skin cancer with deep neural networks[J].Nature,2017,542:115-118.
[51]Kermany DS,Goldbaum M,Cai W,et al.Identifying medical diagnoses and treatable diseases by image-based deep learning[J].Cell,2018,172(5):1122-1131.
[52]Li Xiangchun,Zhang Sheng,Zhang Qiang,et al.Diagnosisofthyroidcancerusingdeepconvolutionalneuralnetwork models applied to sonographic images:retrospective,multicohort,diagnostic study[J].Lancet Oncology,2019,20(2):193-201.
[53]Zhang K,Liu XH,Shen J,et al.Clinically applicable AIsystem for accurate diagnosis,quantitative measurements,and prognosis of COVID-19 Pneumonia Using Computed Tomography[J].Cell,181(6):1423-1433.
[54]Ma JL,Wu F,Jiang T,et al.Cascade convolutional neural networks for automatic detection of thyroid nodules in ultrasound images[J].Medical Physics,2017,44:1678-1691.
[55]Ma JL,Wu F,Zhu J,et al.pre-trained convolutional neural network based method for thyroid nodule diagnosis[J].Ultrasonic,2017,73:221-230.
[56]Ma JL,Wu F,Jiang T,et al.Ultrasound image based thyroid nodule automatic segmentation using convolutional neural networks[J].International Journal of Computer Assisted Radiology and Surgery,2017,12(11):1895-1910.
[57]国家自然科学基金委员会生命科学部.未来10年中国学科发展战略·生物医学工程学[M].北京:科学出版社,2012:218-234.Life Science Department of National Natural Science Foundation of China.Chinese discipline development strategies for next 10years·Biomedical engineering[M].Beijing:Science Press,2012:218-234.
[58]张惠茅,萧毅,洪楠等.医学影像人工智能产业现状和发展需求调研报告[J].中华放射学杂志,2019,53(6):507-511.Zhang HM,Xiao Y,Hong N,et al.Investigation report on current status and developmental needs of medical imaging artificial intelligence[J].Chinese Journal of Radiology,2019,53(6):507-511.
[59]中国计算机学会.2017-2018中国计算机科学技术发展报告[M].北京:机械工业出版社,2018:183-214.China Computer Federation.Development Report of 2017-2018 Computer Science and Technology in China[M].Beijing:China Machine Press,2018:183-214.
[60]Arrieta AB,Diaz-Rodriguez N,Ser JD,et al.Explainable artificial intelligence:concepts,taxonomies,opportunities and challenges toward responsible AI[J].Information Fusion,2020,58:82-115.
基本信息:
DOI:10.16289/j.cnki.1002-0837.2021.05.009
中图分类号:TP391.41;TP18;R445
引用信息:
[1]邱陈辉,黄崇飞,夏顺仁等.人工智能在医学影像辅助诊断中的应用综述[J].航天医学与医学工程,2021,34(05):407-414.DOI:10.16289/j.cnki.1002-0837.2021.05.009.
基金信息:
浙江省自然科学基金探索项目(LQ21A010012); 中国博士后科学基金资助项目(2021M692834); 国家自然科学基金重大项目(12090020,12090025)