10 | 0 | 9 |
下载次数 | 被引频次 | 阅读次数 |
目的 探讨二甲双胍诱导的代谢干预对成肌细胞增殖与分化的影响及机制。方法 实验组以1 mmol/L的二甲双胍处理培养于生长或分化培养基中的C2C12成肌细胞,对照组进行二甲基亚砜(DMSO)处理。于生长培养基中处理48 h,其间每隔12 h收集细胞样本,进行代谢组学分析及蛋白表达、线粒体功能和细胞增殖相关检测;于分化培养基中诱导分化72 h,通过胚胎肌球蛋白重链免疫荧光检测肌管形成。结果 经二甲双胍处理后,细胞内乳酸、丙酮酸、一磷酸腺苷等代谢物表达增加,而三磷酸腺苷与硫胺素焦磷酸等代谢物表达减少;同时,腺苷酸活化蛋白激酶磷酸化水平及相关蛋白表达均显著上调(P<0.05);线粒体生物发生增强,膜电位显著下降(P<0.05);S期细胞比例逐渐增加,EdU阳性细胞比例显著增多(P<0.01),而细胞增殖速度减慢;诱导分化后,成肌细胞融合指数显著降低(P<0.01)。结论 二甲双胍诱导成肌细胞代谢重编程并抑制细胞增殖分化,腺苷酸活化蛋白激酶相关信号通路的激活是其重要分子机制。
Abstract:Objective To investigate the effects and mechanisms of metformin-induced metabolic intervention on the proliferation and differentiation of myoblasts. Methods C2C12 myoblasts cultured in growth or differentiation media were treated with 1 mmol/L metformin, with DMSO as the control. Cells in growth media were treated for 48 hours, with samples collected every 12 hours for metabolomic analysis, protein expression, mitochondrial function, and proliferation assays. Cells in differentiation media were induced to differentiate for 72 hours, and myotube formation was assessed via embryonic myosin heavy chain immunofluorescence staining. Results Metformin treatment increased intracellular levels of metabolites such as lactate, pyruvate, and adenosine monophosphate, while reducing adenosine triphosphate and thiamine pyrophosphate. Phosphorylation of AMP-activated protein kinase(AMPK) and related protein expression were significantly upregulated(P<0.05). Mitochondrial biogenesis was enhanced, and membrane potential markedly decreased(P<0.05). The proportion of S-phase cells and EdU-positive cells gradually increased(P<0.01), though overall proliferation rate slowed. During differentiation, the myoblast fusion index significantly decreased(P<0.01). Conclusion Metformin induces metabolic reprogramming in myoblasts and suppresses their proliferation and differentiation, with activation of AMPK-related signaling pathways serving as a key molecular mechanism.
[1]Yin L, Li N, Jia W, et al. Skeletal muscle atrophy:from mechanisms to treatments[J]. Pharmacological Research , 2021, 172:105807.
[2]Zhou S, Han L, Wu Z. A long journey before cycling:regulation of quiescence exit in adult muscle satellite cells[J].International Journal of Molecular Sciences, 2022, 23(3):1748.
[3]Sousa-Victor P, Garcia-Prat L, Munoz-Canoves P. Control of satellite cell function in muscle regeneration and its disruption in ageing[J].Nature Reviews Molecular Cell Biology, 2022, 23(3):204-226.
[4]Xie WQ, Xiao WF, Tang K, et al. Caloric restriction:implications for sarcopenia and potential mechanisms[J]. Aging(Albany NY), 2020,12(23):24441-24452.
[5]Huo F, Liu Q, Liu H. Contribution of muscle satellite cells to sarcopenia[J]. Frontiers in Physiology, 2022, 13:892749.
[6]Foretz M, Guigas B, Viollet B. Metformin:update on mechanisms of action and repurposing potential[J]. Nature Reviews Endocrinology,2023, 19(8):460-476.
[7]Madeo F, Carmona-Gutierrez D, Hofer SJ, et al. Caloric restriction mimetics against age-associated disease:targets, mechanisms, and therapeutic potential[J]. Cell Metabolism, 2019, 29(3):592-610.
[8]Onken B, Driscoll M. Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN-1[J]. Public Library of Science One, 2010, 5(1):e8758.
[9]Yuan H, Hu Y, Zhu Y, et al. Metformin ameliorates high uric acid-induced insulin resistance in skeletal muscle cells[J]. Molecular and Cellular Endocrinology, 2017, 443:138-145.
[10]Lamoia TE, Shulman GI. Cellular and molecular mechanisms of metformin action[J]. Endocrine Reviews, 2021, 42(1):77-96.
[11]Dutta S, Shah RB, Singhal S, et al. Metformin:a review of potential mechanism and therapeutic utility beyond diabetes[J]. Drug Design,Development and Therapy, 2023, 17:1907-1932.
[12]Potes Y, Bermejo-Millo JC, Mendes C, et al. p66Shc signaling and autophagy impact on C2C12 myoblast differentiation during senescence[J]. Cell Death&Disease, 2024, 15(3):200.
[13]Wang Z, Zhao F, Xu C, et al. Metabolic reprogramming in skin wound healing[J]. Burns&Trauma, 2024, 12:d47.
[14]Rafalski VA, Mancini E, Brunet A. Energy metabolism and energy-sensing pathways in mammalian embryonic and adult stem cell fate[J]. Journal of Cell Science, 2012, 125(Pt 23):5597-5608.
[15]Polverino F, Wu TD, Rojas-Quintero J, et al. Metformin:experimental and clinical evidence for a potential role in emphysema treatment[J]. American Journal of Respiratory and Critical Care Medicine,2021, 204(6):651-666.
[16]Zhang SY, Lam T. Metabolic regulation by the intestinal metformin-AMPK axis[J]. Nature Communications, 2022, 13(1):2851.
[17]Kang MJ, Moon JW, Lee JO, et al. Metformin induces muscle atrophy by transcriptional regulation of myostatin via HDAC6 and FoxO3a[J]. Journal of Cachexia Sarcopenia and Muscle, 2022, 13(1):605-620.
[18]Sharma A, Anand SK, Singh N, et al. AMP-activated protein kinase:An energy sensor and survival mechanism in the reinstatement of metabolic homeostasis[J]. Experimental Cell Research, 2023, 428(1):113614.
[19]Li X, Kazgan N. Mammalian sirtuins and energy metabolism[J]. International Journal of Biological Sciences, 2011, 7(5):575-587.
[20]Scarpulla RC, Vega RB, Kelly DP. Transcriptional integration of mitochondrial biogenesis[J]. Trends in Endocrinology and Metabolism,2012, 23(9):459-466.
[21]Gonzalez A, Hall MN, Lin SC, et al. AMPK and TOR:The Yin and Yang of cellular nutrient sensing and growth control[J]. Cell Metabolism, 2020, 31(3):472-492.
[22]Williamson DL, Butler DC, Alway SE. AMPK inhibits myoblast differentiation through a PGC-1alpha-dependent mechanism[J]. American Journal of Physiology-Endocrinology and Metabolism, 2009,297(2):E304-E314.
[23]Ye C, Zhang D, Zhao L, et al. CaMKK2 suppresses muscle regeneration through the inhibition of myoblast proliferation and differentiation[J]. International Journal of Molecular Sciences, 2016, 17(10):1695.
[24]Bang S, Kim DE, Kang HT, et al. Metformin restores autophagic flux and mitochondrial function in late passage myoblast to impede age-related muscle loss[J]. Biomedicine&Pharmacotherapy, 2024,180:116981.
[25]Mahmassani ZS, McKenzie AI, Petrocelli JJ, et al. Short-term metformin ingestion by healthy older adults improves myoblast function[J]. American Journal of Physiology-Cell Physiology, 2021,320(4):566-576.
基本信息:
DOI:10.16289/j.cnki.1002-0837.2025.03004
中图分类号:R965
引用信息:
[1]蒲荣喜,卜凡,黄思远等.二甲双胍诱导代谢重编程抑制成肌细胞的增殖分化[J].航天医学与医学工程,2025,36(03):214-219.DOI:10.16289/j.cnki.1002-0837.2025.03004.
基金信息:
空间站工程航天医学专项(HYZHXM01017); 国家自然科学基金资助项目(31171148)