nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv searchzone qikanlogo popupnotification paper paperNew
2025, 06, v.36 560-567
微重力环境下线粒体功能障碍与骨质流失的研究进展
基金项目(Foundation): 国家自然科学基金面上项目(32270607); 载人航天工程航天医学实验领域项目(HYZHXMH01001); 航天医学全国重点实验室开放课题(SKL 2024K03);航天医学全国重点实验室自主研究项目(SKL2024Y04);航天医学全国重点实验室自主研究项目(SKL2024Y07)
邮箱(Email): xue.lin@njmu.edu.cn;jianli2014@seu.edu.cn;
DOI: 10.16289/j.cnki.1002-0837.2025.06008
摘要:

由于微重力的影响,航天员在飞行过程中会经历严重的骨质流失。骨质流失会增加骨质疏松和骨折的风险,严重影响航天员的骨骼健康及执行长期太空飞行任务的能力。线粒体介导的代谢调节能够感应微重力应激,调控多种信号通路,引发细胞内早期反应。本文系统阐述了微重力和模拟微重力环境下,线粒体功能障碍介导骨质流失的作用机制和已有药物的研究进展,为开发新的靶向线粒体的骨保护策略提供了理论依据。

Abstract:

Due to the effects of microgravity, astronauts experience significant bone loss during spaceflight. This bone loss increases the risk of osteoporosis and fractures, posing a serious threat to astronauts' skeletal health and their capability to undertake long-duration space missions. Research has shown that mitochondria-mediated metabolic regulation can sense microgravity stress, modulate multiple signaling pathways, and trigger early cellular responses. This review summarizes the mechanisms by which mitochondrial dysfunction contributes to bone loss in both real and simulated microgravity environments, as well as the progress in existing drug studies. It provides a theoretical foundation for developing new bone-protective strategies targeting mitochondria.

参考文献

[1]ANTONUTTO G, Di PRAMPERO PE. Cardiovascular deconditioning in microgravity:some possible countermeasures[J]. Eur J Appl Physiol, 2003, 90(3/4):283-291.

[2]LEE PHU, CHUNG M, REN Z, et al. Factors mediating spaceflight-induced skeletal muscle atrophy[J]. Am J Physiol Cell Physiol,2022, 322(3):C567-C580.

[3]CHAKRABORTY N, CHEEMA A, GAUTAM A, et al. Gene-metabolite profile integration to understand the cause of spaceflight induced immunodeficiency[J]. NPJ Microgravity, 2018, 4(1):4.

[4]LEBLANC A, SHACKELFORD L, SCHNEIDER V. Future human bone research in space[J]. Bone, 1998, 22(5):113S-116S.

[5]DAS P, BISWAS S, MUKHERJEE S, et al. Association of oxidative stress and obesity with insulin resistance in type 2 diabetes mellitus[J]. Mymensingh Med J, 2016, 25(1):148-152.

[6]MEIGS JB, LARSON MG, FOX CS, et al. Association of oxidative stress, insulin resistance, and diabetes risk phenotypes:The framingham offspring study[J]. Diabetes Care, 2007, 30(10):2529-2535.

[7]LAMBERS FM, SCHULTE FA, KUHN G, et al. Mouse tail vertebrae adapt to cyclic mechanical loading by increasing bone formation rate and decreasing bone resorption rate as shown by time-lapsed in vivo imaging of dynamic bone morphometry[J]. Bone, 2011, 49(6):1340-1350.

[8]SIDDIQUI JA, PARTRIDGE NC. Physiological bone remodeling:Systemic regulation and growth factor involvement[J]. Physiol, 2016,31(3):233-245.

[9]LI L, CUI Z, CHEN J, et al. Effects of simulated microgravity on the expression profiles of RNA during osteogenic differentiation of human bone marrow mesenchymal stem cells[J]. Cell Proliferat, 2019,52(2):e12539.

[10]PAN Z, YANG J, GUO C, et al. Effects of hindlimb unloading on ex vivo growth and osteogenic/adipogenic potentials of bone marrow-derived mesenchymal stem cells in rats[J]. Stem Cells and Dev, 2008,17(4):795-804.

[11]BRAVEBOY-WAGNER J, LELKES PI. Impairment of 7F2 osteoblast function by simulated partial gravity in a random positioning machine[J]. NPJ Microgravity, 2022, 8(1):20.

[12]XU LH, SHAO H, MA YV, et al. OCY454 osteocytes as an in vitro cell model for bone remodeling under mechanical loading[J]. J Orthop Res, 2019, 37(8):1681-1689.

[13]FAN C, WU Z, COOPER DML, et al. Activation of focal adhesion kinase restores simulated microgravity-induced inhibition of osteoblast differentiation via Wnt/Β-catenin pathway[J]. Int J Mol Sci, 2022,23(10):5593.

[14]DIAO Y, CHEN B, WEI L, et al. Polyphenols(S3)isolated from cone scales of pinus koraiensis alleviate decreased bone formation in rat under simulated microgravity[J]. Sci Rep, 2018, 8(1):12719.

[15]ROBLING AG, BONEWALD LF. The osteocyte:new insights[J].Annu Rev Physiol, 2020, 82(Volume 82, 2020):485-506.

[16]RODIONOVA NV, OGANOV VS, ZOLOTOVA NV. Ultrastructural changes in osteocytes in microgravity conditions[J]. Adv Space Res,2002, 30(4):765-770.

[17]GERBAIX M, GNYUBKIN V, FARLAY D, et al. One-month spaceflight compromises the bone microstructure, tissue-level mechanical properties, osteocyte survival and lacunae volume in mature mice skeletons[J]. Sci Rep, 2017, 7(1):2659.

[18]LI X, ZHANG Y, KANG H, et al. Sclerostin binds to LRP5/6 and antagonizes canonical wnt signaling[J]. J Biol Chem, 2005, 280(20):19883-19887.

[19]YANG X, SUN LW, LIANG M, et al. The response of wnt/ß-catenin signaling pathway in osteocytes under simulated microgravity[J]. Microgravity Sci Tec, 2015, 27(6):473-483.

[20]IKEGAME M, HATTORI A, TABATA MJ, et al. Melatonin is a potential drug for the prevention of bone loss during space flight[J]. J Pineal Res, 2019, 67(3):e12594.

[21]YAMAMOTO T, IKEGAME M, HIRAYAMA J, et al. Expression of sclerostin in the regenerating scales of goldfish and its increase under microgravity during space flight[J]. Biomed Res, 2020, 41(6):279-288.

[22]TAMMA R, COLAIANNI G, CAMERINO C, et al. Microgravity during spaceflight directly affects in vitro osteoclastogenesis and bone resorption[J]. FASEB J, 2009, 23(8):2549-2554.

[23]SAMBANDAM Y, TOWNSEND MT, PIERCE JJ, et al. Microgravity control of autophagy modulates osteoclastogenesis[J]. Bone, 2014,61:125-131.

[24]SAMBANDAM Y, BLANCHARD JJ, DAUGHTRIDGE G, et al. Microarray profile of gene expression during osteoclast differentiation in modelled microgravity[J]. J Cell Biochem, 2010, 111(5):1179-1187.

[25]RUCCI N, RUFO A, ALAMANOU M, et al. Modeled microgravity stimulates osteoclastogenesis and bone resorption by increasing osteoblast RANKL/OPG ratio[J]. J Cell Biochem, 2007, 100(2):464-473.

[26]SPATZ JM, WEIN MN, GOOI JH, et al. The wnt inhibitor sclerostin is up-regulated by mechanical unloading in osteocytes in vitro[J]. J Biol Chem, 2015, 290(27):16744-16758.

[27]BHATTI JS, BHATTI GK, REDDY PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders—a step towards mitochondria based therapeutic strategies[J]. BBA-Mol Basis Dis, 2017,1863(5):1066-1077.

[28]NGUYEN HP, TRAN PH, KIM KS, et al. The effects of real and simulated microgravity on cellular mitochondrial function[J]. NPJ Microgravity, 2021, 7(1):44.

[29]DA SILVEIRA WA, FAZELINIA H, ROSENTHAL SB, et al. Comprehensive multi-omics analysis reveals mitochondrial stress as a central biological hub for spaceflight impact[J]. Cell, 2020, 183(5):1185-1201.e20.

[30]ZHANG R, RAN HH, CAI LL, et al. Simulated microgravity-induced mitochondrial dysfunction in rat cerebral arteries[J]. FASEB J, 2014,28(6):2715-2724.

[31]XIONG Y, MA C, LI Q, et al. Melatonin ameliorates simulated-microgravity-induced mitochondrial dysfunction and lipid metabolism dysregulation in hepatocytes[J]. FASEB J, 2023, 37(9):e23132.

[32]GALLOWAY C A, LEE H, NEJJAR S, et al. Transgenic control of mitochondrial fission induces mitochondrial uncoupling and relieves diabetic oxidative stress[J]. Diabetes, 2012, 61(8):2093-2104.

[33]GALLOWAY CA, LEE H, BROOKES PS, et al. Decreasing mitochondrial fission alleviates hepatic steatosis in a murine model of nonalcoholic fatty liver disease[J]. AM J Physiol-Gastr L, 2014, 307(6):G632-G641.

[34]MANSOURI A, GATTOLLIAT CH, ASSELAH T. Mitochondrial dysfunction and signaling in chronic liver diseases[J]. Gastroenterology, 2018, 155(3):629-647.

[35]OTT M, GOGVADZE V, ORRENIUS S, et al. Mitochondria, oxidative stress and cell death[J]. Apoptosis, 2007, 12(5):913-922.

[36]WANG Y, JAVED I, LIU Y, et al. Effect of prolonged simulated microgravity on metabolic proteins in rat hippocampus:Steps toward safe space travel[J]. J Proteome Res, 2016, 15(1):29-37.

[37]MAILYAN ES, KOVALENKO EA. Space flight effect upon the bioenergetics of the skeletal muscles in rats[J]. Life Sci Space Res, 1976,14:263-267.

[38]JI G, CHANG H, YANG M, et al. The mitochondrial proteomic changes of rat hippocampus induced by 28-day simulated microgravity[J]. PLOS ONE, 2022, 17(3):e0265108.

[39]SCHATTEN H, LEWIS ML, CHAKRABARTI A. Spaceflight and clinorotation cause cytoskeleton and mitochondria changes and increases in apoptosis in cultured cells[J]. Acta Astronaut, 2001,49(3):399-418.

[40]XIE Z, KLIONSKY DJ. Autophagosome formation:Core machinery and adaptations[J]. Nat Cell Biol, 2007, 9(10):1102-1109.

[41]陈乐融,王鹏潇,王珍,等.线粒体——空间微重力的细胞内感受器[J].航天医学与医学工程, 2024, 35(4):258-267.

[42]GAO J, WANG Z, GAO P, et al. Daphnetin alleviates senile and disuse osteoporosis by distinct modulations of bone formation and resorption[J]. Antioxidants, 2022, 11(12):2365.

[43]ZHAO H, SHI Y, QIU C, et al. Effects of simulated microgravity on ultrastructure and apoptosis of choroidal vascular endothelial cells[J].Front Physiol, 2021, 11:577325.

[44]YOO YM, HAN TY, KIM H. Melatonin suppresses autophagy induced by clinostat in preosteoblast MC3T3-E1 cells[J]. Int J Mol Sci,2016, 17(4):526.

[45]SMITH SM, ZWART SR, BLOCK G, et al. The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station[J]. J Nutr, 2005, 135(3):437-443.

[46]XIN M, YANG Y, ZHANG D, et al. Attenuation of hind-limb suspension-induced bone loss by curcumin is associated with reduced oxidative stress and increased vitamin D receptor expression[J]. Osteoporosis Int, 2015, 26(11):2665-2676.

[47]ISHRAT T, SAYEED I, ATIF F, et al. Progesterone is neuroprotective against ischemic brain injury through its effects on the phosphoinositide 3-kinase/protein kinase B signaling pathway[J]. Neuroscience,2012, 210:442-450.

[48]MURPHY E, STEENBERGEN C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury[J]. Physiol Rev,2008, 88(2):581-609.

[49]SUN L, WANG H, XU D, et al. Lapatinib induces mitochondrial dysfunction to enhance oxidative stress and ferroptosis in doxorubicin-induced cardiomyocytes via inhibition of PI3K/Akt signaling pathway[J]. Bioengineered, 2022, 13(1):48-60.

[50]LIU JF, SU G, CHEN LX, et al. Irisin attenuates apoptosis following ischemia–reperfusion injury through improved mitochondria dynamics and ROS suppression mediated through the PI3K/akt/mTOR axis[J]. Mol Neurobiol, 2023, 60(8):4261-4272.

[51]ZHANG C, LI L, JIANG Y, et al. Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis[J]. FASEB J, 2018,32(8):4444-4458.

[52]WU QJ, ZHANG TN, CHEN HH, et al. The sirtuin family in health and disease[J]. Signal Transduct Target Ther, 2022, 7(1):402.

[53]GAO J, FENG Z, WANG X, et al. SIRT3/SOD2 maintains osteoblast differentiation and bone formation by regulating mitochondrial stress[J]. Cell Death Differ, 2018, 25(2):229-240.

[54]MIAO LW, LIU TZ, SUN YH, et al. Simulated microgravity-induced oxidative stress and loss of osteogenic potential of osteoblasts can be prevented by protection of primary cilia[J]. J Cell Physiol, 2023,238(11):2692-2709.

[55]CAPECE D, VERZELLA D, DI FRANCESCO B, et al. NF-κB and mitochondria cross paths in cancer:Mitochondrial metabolism and beyond[J]. Semin Cell Dev Biol, 2020, 98:118-128.

[56]WANG M, XUE J, LIU S, et al. Mechanisms of pyroptosis in modulating osteoblast function under simulated microgravity[J]. Bmc Musculoskel Dis, 2025, 26(1):406.

[57]Balkwill F. Tumour necrosis factor and cancer[J]. Nat Rev Cancer,2009, 9(5):361-371.

[58]VORONOV E, APTE RN. IL-1 in colon inflammation, colon carcinogenesis and invasiveness of colon cancer[J]. Cancer Microenviron,2015, 8(3):187-200.

[59]MICHALETTI A, GIOIA M, TARANTINO U, et al. Effects of microgravity on osteoblast mitochondria:A proteomic and metabolomics profile[J]. Sci Rep, 2017, 7(1):15376.

[60]MORABITO C, GUARNIERI S, CUCINA A, et al. Antioxidant strategy to prevent simulated microgravity-induced effects on bone osteoblasts[J]. Int J Mol Sci, 2020, 21(10):3638.

[61]TIAN Y, MA X, YANG C, et al. The impact of oxidative stress on the bone system in response to the space special environment[J]. Int J Mol Sci, 2017, 18(10):2132.

[62]MORIKAWA D, NOJIRI H, SAITA Y, et al. Cytoplasmic reactive oxygen species and SOD1 regulate bone mass during mechanical unloading[J]. J Bone Miner Res, 2013, 28(11):2368-2380.

[63]DINKOVA-KOSTOVA AT, TALALAY P. Direct and indirect antioxidant properties of inducers of cytoprotective proteins[J]. Mol Nutr Food Res, 2008.

[64]ZWART SR, PIERSON D, MEHTA S, et al. Capacity of omega-3fatty acids or eicosapentaenoic acid to counteract weightlessness-induced bone loss by inhibiting NF-κB activation:From cells to bed rest to astronauts[J]. J Bone Miner Res, 2010, 25(5):1049-1057.

[65]WANG N, ZUO Z, MENG T, et al. Salidroside alleviates simulated microgravity-induced bone loss by activating the Nrf2/HO-1 pathway[J].J Orthop Surg Res, 2024, 19(1):531.

[66]CHEN X, YANG J, LV H, et al. The potential benefits of melatonin in the prevention and treatment of bone loss in response to microgravity[J]. Acta Astronaut, 2023, 202:48-57.

[67]MULAYIM E, KARABABAİF, AKBAŞH, et al. Melatonin receptor gene polymorphism in bipolar-I disorder[J]. Arch Med Res, 2021,52(5):523-528.

[68]FERLAZZO N, ANDOLINA G, CANNATA A, et al. Is melatonin the cornucopia of the 21st century?[J]. Antioxidants, 2020, 9(11):1088.

[69]REITER RJ, MAYO JC, TAN D, et al. Melatonin as an antioxidant:under promises but over delivers[J]. J Pineal Res, 2016, 61(3):253-278.

[70]WANG X, LIANG T, ZHU Y, et al. Melatonin prevents bone destruction in mice with retinoic acid–induced osteoporosis[J]. Mol Med, 2019,25(1):43.

[71]LIU HD, REN MX, LI Y, et al. Melatonin alleviates hydrogen peroxide induced oxidative damage in MC3T3-E1 cells and promotes osteogenesis by activating SIRT1[J]. Free Radic Res, 2022, 56(1):63-76.

[72]QU L, YANG T, YUAN Y, et al. Protein nitration increased by simulated weightlessness and decreased by melatonin and quercetin in PC12 cells[J]. Nitric Oxide, 2006, 15(1):58-63.

[73]FURUSAWA Y, YAMAMOTO T, HATTORI A, et al. De novo transcriptome analysis and gene expression profiling of fish scales isolated from carassius auratus during space flight:Impact of melatonin on gene expression in response to space radiation[J]. Mol Med Reports,2020, 22(4):2627-2636.

[74]TAMTAJI OR, MIRHOSSEINI N, REITER RJ, et al. Melatonin and pancreatic cancer:current knowledge and future perspectives[J]. J Cell Physiol, 2019, 234(5):5372-5378.

[75]COTO-MONTES A, BOGA J, TAN D, et al. Melatonin as a potential agent in the treatment of sarcopenia[J]. Int J Mol Sci, 2016, 17(10):1771.

[76]ANDERSEN LPH, GÖGENUR I, ROSENBERG J, et al. The safety of melatonin in humans[J]. Clin Drug Invest, 2016, 36(3):169-175.

[77]DELLO RUSSO C, BANDIERA T, MONICI M, et al. Physiological adaptations affecting drug pharmacokinetics in space:what do we really know? A critical review of the literature[J]. Brit J Pharmacol,2022, 179(11):2538-2557.

[78]HUANG Y, DOU Y, YANG B, et al. Nicotinamide mononucleotide supplementation mitigates osteopenia induced by modeled microgravity in rats[J]. Cell Stress Chaperon, 2023, 28(4):385-394.

[79]WU S, ZOU MH. AMPK, mitochondrial function, and cardiovascular disease[J]. Int J Mol Sci, 2020, 21(14):4987.

[80]JORNAYVAZ FR, SHULMAN GI. Regulation of mitochondrial biogenesis[J]. Essays Biochem, 2010, 47:69-84.

[81]CARIATI I, BONANNI R, RINALDI AM, et al. Recombinant irisin prevents cell death and mineralization defects induced by random positioning machine exposure in primary cultures of human osteoblasts:A promising strategy for the osteoporosis treatment[J]. Front Physiol,2023, 14:1107933.

[82]LEE SJ, LEHAR A, MEIR JU, et al. Targeting myostatin/activin a protects against skeletal muscle and bone loss during spaceflight[J].Proc Natl Acad Sci USA, 2020, 117(38):23942-23951.

[83]FLORIN A, LAMBERT C, SANCHEZ C, et al. The secretome of skeletal muscle cells:a systematic review[J]. Osteoarthr Cartil Open,2020, 2(1):100019.

[84]FU J, GOLDSMITH M, CROOKS SD, et al. Bone health in spacefaring rodents and primates:Systematic review and meta-analysis[J].NPJ Microgravity, 2021, 7(1):19.

[85]MIN K, SMUDER AJ, KWON OS, et al. Mitochondrial-targeted antioxidants protect skeletal muscle against immobilization-induced muscle atrophy[J]. J Appl Phys, 2011, 111(5):1459-1466.

[86]KAMAL KY, TROMBETTA-LIMA M. Mechanotransduction and skeletal muscle atrophy:The interplay between focal adhesions and oxidative stress[J]. Int J Mol Sci, 2025, 26(6):2802.

[87]ZHAI Y, ZHANG Y, XU K, et al. Cordycepin ameliorates spaceflight-induced osteoporosis by preventing BMSCs oxidative stress and senescence via interacting with PI3K p110α and regulating PI3K/akt/FOXO3 signalling[J]. Free Radical Bio Med, 2025, 228:108-125.

基本信息:

DOI:10.16289/j.cnki.1002-0837.2025.06008

中图分类号:R85

引用信息:

[1]黄琪喻,卢亮,李铠,等.微重力环境下线粒体功能障碍与骨质流失的研究进展[J].航天医学与医学工程,2025,36(06):560-567.DOI:10.16289/j.cnki.1002-0837.2025.06008.

基金信息:

国家自然科学基金面上项目(32270607); 载人航天工程航天医学实验领域项目(HYZHXMH01001); 航天医学全国重点实验室开放课题(SKL 2024K03);航天医学全国重点实验室自主研究项目(SKL2024Y04);航天医学全国重点实验室自主研究项目(SKL2024Y07)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文