15 | 0 | 6 |
下载次数 | 被引频次 | 阅读次数 |
目的 随着我国登月计划及月球基地建设计划的逐步推进,月球移动舱段对接组装技术成为未来开展月球移动舱长期驻留、月球基地建设的重要手段。因此,月球舱段间的柔性对接结构设计成为亟待解决的问题。方法 为了解决月球表面的崎岖地形与沉降等因素严重影响移动舱段在月球上进行精准对接的问题,设计一种由蒙皮与骨架构成的柔性对接段结构。结果 结构通过形变以满足月球移动舱段间所需的大容差对接范围的要求。在蒙皮设计方面,对接段结构采用多种复合材料构成柔性蒙皮以应对月表辐照、大范围温度变化、流星体超高速撞击等月面环境问题;在骨架设计方面,制订波纹状骨架结构方案。结论 基于Ansys和Adams软件对骨架结构进行静力学和动力学仿真分析,验证了该结构作为月球舱段间柔性对接结构的可行性。
Abstract:Objective With the gradual advancement of China's lunar exploration program and the construction plan for lunar bases, the technology of docking and assembling mobile lunar modules has become an important means for long-term habitation of lunar mobile modules and the construction of lunar bases in the future. Therefore, the design of flexible docking structures between lunar modules has become an urgent problem to be solved. Methods To address the issue of precise docking of mobile lunar modules on the lunar surface, which is severely affected by the uneven terrain and settlement, this paper proposes a flexible docking segment structure composed of a skin and a skeleton.Results The structure deforms to meet the large tolerance docking range required between lunar mobile modules. In terms of skin design, the docking segment structure uses a variety of composite materials to form a flexible skin to cope with the lunar surface environment problems such as radiation, wide temperature variations, and high-speed meteoroid impacts. In terms of skeleton design, a corrugated skeleton structure scheme is presented. Conclusion Based on Ansys and Adams software, static and dynamic simulation analyses of the skeleton structure were conducted, verifying the feasibility of this structure as a flexible docking structure between lunar modules.
[1]张崇峰,姚建,刘志,等.我国载人航天器对接机构技术发展[J].航天器工程,2022,31(6):205-212.
[2]付新卫,孟少华,周印佳,等.柔性可展开太空舱研究进展[J].航天返回与遥感,2020,41(3):37-46.
[3] Weiss P, PeerMohamed M,. Gobert T,et al. Advanced materials for future lunar extravehicular activity space suit[J]. Adv Mater Technol,2020, 5(9):2000028.
[4]祁浩然,杨明伟,张新岭,等.充气式月球居住舱蒙皮结构设计及其材料研究进展[J].航天器环境工程,2021,38(6):715-722.
[5] Tian-Wei L, Jiang-Bo B. Folding behaviour of a deployable composite cabin for space habit ats-part 1:Experimental and numerical investingation[J]. Composite Structures, 2022:302.
[6] Geng SN, Wang YY, Wang C, et al.A Space Tendon-Driven Continuum Robot[C]. International Conference on Swarm Intelligence, 2018.
[7]欧阳自远.月球科学概论[M].北京:中国宇航出版社,2005.
[8]孙浩,沈志刚,张晓静,等.月尘特性与模拟月尘研制现状[J].载人航天,2015,21(6):642-652.
[9]管公顺,曾明,李航杰.多层隔热材料对填充式结构高速撞击损伤影响的实验研究[J].材料工程,2016,44(9):96-102.
[10]江经善,张世伶.多层隔热材料的性能研究[J].中国空间科学技术,1988(1):64-70.
[11]杨增帅,袁玮,姚海兵.基于ANSYS的内压薄壁圆筒壁厚计算有限元研究[J].中国高新技术企业,2009(8):9-10.
[12] Claudio B, Gianni R. Flextegrity arched structures for lunar bases built from indigenous materials[J]. Acta Astronautica, 2024:215107-215116.
[13]侯文国.基于外驱动内置臂的航天服上肢寿命试验系统[D].北京:北京交通大学,2016.
[14]尚坤,刘向阳,李猛.基于有限元方法的航天服平褶式关节建模[J].航空学报,2015,36(3):1002-1010.
基本信息:
DOI:10.16289/j.cnki.1002-0837.2025.02006
中图分类号:V476.3
引用信息:
[1]王懿晗,邹爗,贾雪文等.一种月球舱段间的柔性连接结构设计研究[J].航天医学与医学工程,2025,36(02):118-122.DOI:10.16289/j.cnki.1002-0837.2025.02006.
基金信息:
航天科技创新基金(SAST2023-039)