195 | 0 | 6 |
下载次数 | 被引频次 | 阅读次数 |
目的利用RGB-D数据驱动骨肌模型来预测受试者步行时的膝关节接触力,并验证其准确性。方法首先,利用Kinect和Qualisys运动捕捉系统(参照标准)同步采集了6名受试者的运动轨迹数据;然后,利用运动轨迹数据和地面反作用力数据分别驱动校准后的骨骼肌肉模型,通过模型的逆向动力学分析功能实现了膝关节接触力的预测;最后,利用均方根误差(δRMSE)和皮尔逊相关系数(ρ)对两种方法的预测结果进行了对比验证。结果和参照方法相比,RGB-D数据驱动的骨肌模型能准确预测受试者步行时的膝关节接触力(δRMSE=77.1;ρ=0.970)。结论 RGB-D数据驱动的骨肌模型能够精准预测膝关节接触力,可作为一种更好的替代方法在临床上应用。
Abstract:Objective To predict the knee contact force during walking and to verify the accuracy of RGBD data-driven musculoskeletal model.Methods Kinect and Qualisys motion capture system(reference standard)were used to collect the motion trajectory data of 6 subjects synchronously.The calibrated musculoskeletal model was driven by the motion trajectory data and ground reaction force data respectively.Then the contact force of the knee joint was predicted by the reverse dynamics analysis function of the model.In the end,the root mean square error(δRMSE),and Pearson correlation coefficient(ρ)were used to compare and verify the predicted results of the two methods.Results Comparing with the reference method,the RGB-D data-driven musculoskeletal model could accurately predict the contact force of the knee joint during walking(δRMSE=77.1;ρ=0.970).Conclusion RGB-D data-driven musculoskeletal model can accurately predict the contact force of the knee joint,and can be used as a better alternative in clinical practice.
[1] Park S,Lee S,Yoon J,et al.Finite element analysis of knee and ankle joint during gait based on motion analysis[J].Medical Engineering&Physics,2019,63:33-41.
[2] Liu F,Wang M,Wang J,et al.The influence of frontally flat bearing design on contact mechanics and kinematics in total knee joint replacements[J].Tribology International,2019,136:23-30.
[3] Skals S,Rasmussen KP,Bendtsen KM,et al.A musculoskeletal model driven by dual Microsoft Kinect Sensor data[J].Multibody System Dynamics,2017,41(4):297-316.
[4] Chan HY,Walker PS.OpenSim as a preliminary kinematic testing platform for the development of total knee arthroplasty implants[J].Journal of Biomechanics,2018(76):53-60.
[5] Hast MW,Hanson BG,Baxter JR,et al.Simulating contact using the elastic foundation algorithm in OpenSim[J].Journal of Biomechanics,2019(82):392-396.
[6] Dooley E,Carr JB,Carson EW,et al.The effects of knee support on the sagittal lower-body joint kinematics and kinetics of deep squats[J].Journal of Biomechanics,2019,82:164-170.
[7] Evangelista PJ,Laster SK,Lenz NM,et al.A computer model of mid-flexion instability in a balanced total knee arthroplasty[J].Journal of Arthroplasty,2018,33(7):265-269.
[8] Ardestani MM,Zhenxian C,Noori H,et al.Computational analysis of knee joint stability following total knee arthroplasty[J].Journal of Biomechanics,2019,86:17-26.
[9] Hu J,Xin H,Chen Z,et al.The role of menisci in knee contact mechanics and secondary kinematics during human walking[J].Clinical Biomechanics,2019,61:58-63.
[10] Park S,Lee S,Yoon J,et al.Finite element analysis of knee and ankle joint during gait based on motion analysis[J].Medical Engineering&Physics,2019,63:33-41.
[11]朱业安,徐唯祎,王睿,等.偏瘫步态障碍的自动识别和分析[J].生物医学工程学杂志,2019,36(02):306-314.Zhu YA,Xu WY.Wang R,et al.Automatic recognition and analysis of hemiplegic gait disorder[J].Journal of Biomedical Engineering,2019,36(02):306-314.
[12] Latorre J,Lorens R,Colomer C,et al.Reliability and comparison of kinect-based methods for estimating spatiotemporal gait parameters of healthy and post-stroke individuals[J].J Biom,2018,72(27):268-273.
[13] Eltoukhy M,Kuenze C,Jeonghoon O,et al.Microsoft Kinect can distinguish differences in over-ground gait between older persons with and without Parkinson’s disease[J].Med Eng Phys,2017,47(44):1-7.
[14] Dolatabadi E,Taati B,Mihailidis A.Concurrent validity of the Microsoft Kinect for Windows v2for measuring spatiotemporal gait parameters[J].Med Eng Phys,2016,38(9):952-958.
[15] Rajagopal A,Dembia C,Demers MS,et al.Full-Body musculoskeletal model for muscle-driven simulation of human gait[J].IEEE Transactions on Biomedical Engineering,2016,63(10):2068-2079.
[16] Eltoukhy M,Kuenze C,Andersen MS,et al.Prediction of ground reaction forces for Parkinson’s disease patients using a kinect-driven musculoskeletal gait analysis model[J].Medical Engineering&Physics,2017,50:75-82.
[17] Marzieh MA,Chen ZX,Wang L,et al.Feed forward artificial neural network to predict contact force at medial knee joint:Application to gait modification[J].Neurocomputing,2014,139(2):114-129.
[18] Peng YH,Zhang ZF,Gao YC,et al.Concurrent prediction of ground reaction forces and moments and tibiofemoral contact forces during walking using musculoskeletal modelling[J].Medical Engineering&Physics,2018,52:31-40.
[19] Chen ZX,Zhang ZF,Wang L,et al.Evaluation of a subject-specific musculoskeletal modelling framework for load prediction in total knee arthroplasty[J].Medical Engineering&Physics,2016,38(8):708-716.
[20] Marra MA,Vanheule V,Fluit R,et al.A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty[J].Journal of Biomechanical Engineering,2015,137(2):2-4.
基本信息:
DOI:10.16289/j.cnki.1002-0837.2020.03.011
中图分类号:R318.01
引用信息:
[1]徐唯祎,朱业安,王浩伦等.利用RGB-D数据驱动的骨肌模型预测膝关节接触力[J].航天医学与医学工程,2020,33(03):252-257.DOI:10.16289/j.cnki.1002-0837.2020.03.011.
基金信息:
中国高校产学研创新基金(用友专项);; 江西省科技厅重点研发计划项目(20192BBG70011)