nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 02, v.36 101-106
明胶基双网络离子导电水凝胶的制备及特性研究
基金项目(Foundation): 国家自然科学基金面上项目(52373093); 河南省自然科学基金优秀青年基金(242300421062)
邮箱(Email): liuhu@zzu.edu.cn;13301009127@139.com;
DOI: 10.16289/j.cnki.1002-0837.2025.02003
摘要:

目的 随着人机交互、人体运动监测技术和健康管理水平的不断发展,具有优异弹性和生物相容性的离子导电水凝胶在可穿戴设备和航天医学领域的应用日益广泛。为解决传统离子导电水凝胶机械性能差、传感信号不稳定等问题,开发性能优异的水凝胶材料具有重要意义。方法 采用两步法制备聚丙烯酰胺/明胶双网络离子导电水凝胶,开展化学结构、力学性能及应变传感响应特性的系统研究。结果 制备的水凝胶具有高透明度和良好拉伸性,在0~800%应变范围内表现出较高灵敏度(GF=9.40)、快速响应和优异的响应稳定性,可实现复杂的人体运动和生理信号的实时监测。结论 制备的水凝胶具备优良的力学与传感性能,在可穿戴医疗监测领域,尤其在航天医学中的人体生理信号检测方面具有潜在的应用价值。

Abstract:

Objective With the continuous development of human-machine interaction, human movement monitoring technology and health management level, ionic conductive hydrogels with excellent elasticity and biocompatibility have been increasingly used in the fields of wearable devices and aerospace medicine. In order to solve the problems of poor mechanical properties and unstable sensing signals of traditional ion-conductive hydrogels, it is of great significance to develop hydrogel materials with excellent performance. Methods The polyacrylamide/gelatin(PAM/Gelatin) dual-network ionic conductive hydrogels were prepared by a two-step method, and a systematic study of the chemical structure, mechanical properties and strain sensing response characteristics was carried out. Results The prepared hydrogels have high transparency and good tensile properties, and exhibit high sensitivity(GF=9.40), fast response and excellent response stability in the 0-800% strain range, which can realize the real-time monitoring of complex human motion and physiological signals. Conclusion The prepared hydrogel possesses excellent mechanical and sensing properties, and has potential applications in the wearable medical monitoring,especially in human physiological signal detection in aerospace medicine.

参考文献

[1]Amjadi M,Kyung K-U,Park I,et al.Stretchable,skin-mountable,and wearable strain sensors and their potential applications:a review[J].Advanced Functional Materials,2016,26(11):1678-1698.

[2]李延军,李莹辉,余新明.穿戴式健康监测设备的现状与未来[J].航天医学与医学工程,2016,29(3):229-234.

[3]鲍淑娣,张元亭.远程医疗:穿戴式生物医疗仪器[J].中国医疗器械信息,2004,10(5):1-4.

[4]Yue X,Fang C,Yao Q,et al.Tunable porous fiber-shaped strain sensor with synergistic conductive network for human motion recognition and tactile sensing[J].Chemical Engineering Journal,2024,491:151853.

[5]Lavrador P,Esteves MR,Gaspar VM,et al.Stimuli-responsive nanocomposite hydrogels for biomedical applications[J].Advanced Functional Materials,2021,31(8):2005 941.

[6]Sun YN,Gao GR,Du GL,et al.Super tough,ultrastretchable,and thermoresponsive hydrogels with functionalized triblock copolymer micelles as macro-cross-linkers[J].ACS Macro Letters,2014,3(5):496-500.

[7]An R,Zhang B,Han L,et al.Strain-sensitivity conductive MWCNTs composite hydrogel for wearable device and near-infrared photosensor[J].Journal of Materials Science,2019,54(11):8515-8530.

[8]Zhang Z,Wang L,Yu H,et al.Highly transparent,self-healable,and adhesive organogels for bio-inspired intelligent ionic skins[J].ACS Applied Materials&Interfaces,2020,12(13):15657-15666.

[9]Lin F,Zhu Y,You Z,et al.Ultrastrong and tough urushiol-based ionic conductive double network hydrogels as flexible strain sensors[J].Polymers,2023,15(15):3219.

[10]Lu M,Shen L,Su H,et al.Highly ionic conductive,elastic,and biocompatible double-network composite gel for epidermal biopotential monitoring and wearable sensing[J].Journal of Colloid and Interface Science,2025,684:272-282.

[11]He Q,Huang Y,Wang S.Hofmeister effect-assisted one step fabrication of ductile and strong gelatin hydrogels[J].Advanced Functional Materials,2018,28(5):1705069.

[12]Ge G,Zhang Y,Shao J,et al.Stretchable,transparent,and selfpatterned hydrogel-based pressure sensor for human motions detection[J].Advanced Functional Materials,2018,28(3 2):1802576.

[13]Li N,Chen W,Chen G,et al.Rapid shape memory TEMPO-oxidized cellulose nanofibers/polyacrylamide/gelatin hydrogels with enhanced mechanical strength[J].Carbohydrate polymers,2017,171:77-84.

[14]Cao S,Tong X,Dai K,et al.A super-stretchable and tough functionalized boron nitride/PEDOT:PSS/poly(Nisopropylacrylamide)hydrogel with self-healing,adhesion,conductive and photothermal activity[J].Journal of Materials Chemistry A,2019,7(14):8204-8209.

[15]Ouyang L,Kuo CC,Farrell B,et al.Poly[3,4-ethylene dio xythiophene(EDOT)-co-1,3,5-tri[2-(3,4-ethylene dioxythienyl)]-benzene(EPh)] copolymers(PEDOT-co-EPh):optical,electrochemical and mechanical properties[J].J Mater Chem B Mater Biol Med,2015,3(25):5010-5120.

[16]Zhang D,Zhang M,Wang J,et al.Impedance response behavior and mechanism study of axon-like ionic conductive cellulosebased hydrogel strain sensor[J].Advanced Composites and hybrid materials,2022,5:1812-1820.

[17]Sun H,Zhao Y,Wang C,et al.Ultra-Stretchable,durable and conductive hydrogel with hybrid double network as high performance strain sensor and stretchable triboelectric nanogenerator[J].Nano Energy,2020,76:105035.

基本信息:

DOI:10.16289/j.cnki.1002-0837.2025.02003

中图分类号:TQ427.26

引用信息:

[1]岳笑颜,孙红玲,刘虎等.明胶基双网络离子导电水凝胶的制备及特性研究[J].航天医学与医学工程,2025,36(02):101-106.DOI:10.16289/j.cnki.1002-0837.2025.02003.

基金信息:

国家自然科学基金面上项目(52373093); 河南省自然科学基金优秀青年基金(242300421062)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文