nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 02, v.36 107-111
低压环境下典型体力作业对人体局部热生理影响的研究
基金项目(Foundation):
邮箱(Email): xinxingfeng@hotmail.Com;ding1971316@buaa.edu.cn;
DOI: 10.16289/j.cnki.1002-0837.2025.02004
摘要:

目的 太空低压环境下开展体力作业任务是航天员面临的主要生理挑战之一。本研究探究典型体力作业对人体各节段的局部热生理影响,深入分析低压环境下的作业任务对人体作业能力的影响机制,为面向人体局部热生理和整体作业能力的航天服温控设计提供理论依据。方法 本研究在低压复合环境模拟舱中开展了两种典型体力作业试验,包括负重15 kg徒步和25 kg重物搬运。将模拟舱设置为试验高度4500 m,即约57 kPa压力;温度26℃,湿度40%。选取6名未经历低压习服的成年男性,环境稳定后采集作业全程的12点皮肤温度,并对各局部温度数据进行统计分析。结果 低压环境下,身体相同部位对不同工况下体力作业时间的响应存在差异。在行走作业中,主要活动部位大腿和小腿的温度均有所下降,且除骨盆和足部外,其余身体部位的温度随着试验进程逐渐降低;在搬运作业中,主要活动部位背部、大臂肌肉的温度明显上升。而在同一作业类型中,身体各部位温度随体力作业的时间响应变化而不同。结论 航天员在低压环境下完成不同类型的作业任务会对身体局部的热生理产生不同影响。因此,在航天服温控设计中,除了考虑不同作业的基本强度以及人体代谢的差异,还应根据作业类型和具体产热部位调节局部的加热制冷量,从而实现航天服针对性智能热控制,提升特定作业场景中的作业保障水平。

Abstract:

Objective Performing physical tasks in the low-pressure environment of space poses a significant physiological challenge for astronauts. This study investigates the localized thermophysiological effects of typical physical tasks on different body segments and analyzes the mechanisms by which low-pressure environments influence human task performance. The findings aim to provide a theoretical basis for the thermal control design of spacesuits,focusing on both localized thermoregulation and overall task performance. Methods Two typical physical tasks—15 kg weighted walking and 25 kg load-carrying—were conducted in a simulated low-pressure composite environment chamber. The chamber was set to an altitude-equivalent pressure of 57 kPa(4500 m), with a temperature of 26℃ and humidity of 40%. Six non-acclimatized adult male participants were recruited. After environmental stabilization,12-point skin temperatures were recorded throughout the tasks, and localized temperature data were statistically analyzed. Results Under low-pressure conditions, different body regions exhibited distinct thermal responses over time depending on the task type, while the same body region showed varied responses under different task conditions.During walking, temperatures in the primary active regions(thighs and calves) decreased, with most other body regions(except the pelvis and feet) gradually cooling as the task progressed. In contrast, during load-carrying, temperatures in the primary active regions(back and upper arm muscles) increased significantly. Conclusion Astronauts performing different tasks in low-pressure environments experience distinct localized thermophysiological effects. Therefore,spacesuit thermal control systems should not only account for task intensity and metabolic differences but also adapt localized heating/cooling based on task-specific thermal profiles. This approach enables targeted intelligent thermal regulation, enhancing operational support in specific mission scenarios.

参考文献

[1]赵明亮,王相阳,李欣欣,等.高原缺氧代谢组学研究进展[J].中草药,2018,49(4):948-954.

[2] Tremblay JC, Ainslie PN. Global and country-level estimates of human population at high altitude[J]. Proc Natl Acad Sci USA, 2021,118(18):e2102463118.

[3] Tansey EA, Johnson CD. Recent advances in thermoregulation[J].Advances in Physiology Education, 2015, 39(3):139-148.

[4] Burtscher M, Philadelphy M, Gatterer H, et al. Physiological responses in humans acutely exposed to high altitude(3480 m):Minute ventilation and oxygenation are predictive for the development of acute mountain sickness[J]. High Altitude Medicine&Biology, 2019,20(2):192-197.

[5] Burtscher M, Philadelphy M, Gatterer H, et al. Submaximal exercise testing at low altitude for prediction of exercise tolerance at high altitude[J]. Journal of Travel Medicine, 2018, 25(1):011-016.

[6] Tannheimer M, van der Spek R, Brenner F, et al. Oxygen saturation increases over the course of the night in mountaineers at high altitude(3050-6354 m)[J]. Journal of Travel Medicine, 2017, 24(5):041-047.

[7] Hu Z, Wu J, Yang L, et al. Physiological and perceptual responses of exposure to different altitudes in extremely cold environments[J].Energy and Buildings, 2021, 242:110844.

[8] Massey HC, House J R, Tipton MJ. Cutaneous vascular responses of the hands and feet to cooling, rewarming, and hypoxia in humans[J].Wilderness&Environmental Medicine, 2018, 29(1):45-55.

[9] Maximov AL, Maximova NN. Individual typological profiles for human heart rate under local cold and hypoxic exposures[J]. Journal of Thermal Biology, 2004, 29:809-813.

[10] Wang H, Hu S, Liu G, et al. Experimental study of human thermal sensation under hypobaric conditions in winter clothes[J]. Energy and Buildings, 2010, 42:2044-2048.

[11] ASHRAE. ASHRAE Handbook of Fundamentals:Chapter 8-Thermal comfort[S]. ASHRAE, 2005:1-29.

[12] O’Brien KA, Pollock RD, Stroud M, et al. Human physiological and metabolic responses to an attempted winter crossing of Antarctica:The effects of prolonged hypobaric hypoxia[J]. Physiological Reports, 2018, 6(5):e13613.

[13] Wood SC. Interactions between hypoxia and hypothermia[J]. Annual Review of Physiology, 1991, 53:71-85.

[14] Gordon CJ. The role of behavioral thermoregulation as a thermoeffector during prolonged hypoxia in the rat[J]. Journal of Thermal Biology, 1997, 22(4-5):315-324.

[15] Ciuha U, Eiken O, Mekjavic IB. Effects of normobaric hypoxic bed rest on the thermal comfort zone[J]. Journal of Thermal Biology,2015, 49-50:39-46.

[16] Tattersall GJ, Milsom WK. Hypoxia reduces the hypothalamic thermogenic threshold and thermosensitivity[J]. The Journal of Physiology, 2009, 587(21):5259-5274.

[17] Kottke FJ, Phalen JS. Effect of hypoxia upon temperature regulation of mice, dogs, and man[J]. The American Journal of Physiology,1948, 153(1):10-15.

[18] DiPasquale DM, Kolkhorst FW, Buono MJ. Acute normobaric hypoxia reduces body temperature in humans[J]. High Altitude Medicine&Biology, 2015, 16(1):61-66.

[19] Bigham AW. Genetics of human origin and evolution:High-altitude adaptations[J]. Current Opinion in Genetics&Development, 2016,41:8-13.

[20] Storz JF, Cheviron ZA. Evolutionary biology of high-altitude adaptation in animals[C]//Annual Review of Animal Biosciences, 2021, 9:149-171.

[21] Taino G, Giardini G, Pecchio O, et al. Work at high altitude:Concepts of physiopathology, risk factors, health surveillance, and criteria for the development of work capacity evaluation criteria[J]. G Ital Med Lav Ergon, 2012, 34(2):101-140.

[22] Chen F, Fu M, Li Y, et al. Modelling and experimental study of thermo-physiological responses of human exercising in cold environments[J]. Journal of Thermal Biology, 2022, 109:103316.

[23] Mourot L. Limitation of maximal heart rate in hypoxia:Mechanisms and clinical importance[J]. Frontiers in Physiology, 2018, 9:972.

[24] Moraga FA, Osorio J, Jiménez D, et al. Aerobic capacity, lactate concentration, and work assessment during maximum exercise at sea level and high altitude in miners exposed to chronic intermittent hypobaric hypoxia(3,800 m)[J]. Frontiers in Physiology, 2019, 10:1149.

[25] Moghetti P, Bacchi E, Brangani C, et al. Metabolic effects of exercise[J]. Frontiers of Hormone Research, 2016, 47:44-57.

[26] Ament W, Verkerke GJ. Exercise and fatigue[J]. Sports Medicine,2009, 39(5):389-422.

[27] Fattorini L, Pittiglio G, Federico B, et al. Workload comparison between hiking and indoor physical activity[J]. Journal of Strength and Conditioning Research, 2012, 26(10):2883-2889.

[28] Berezovskii VA, Serebrovskaia TV, Ivashkevich AA. Various individual features of human adaptation to altitude[J]. Kosm Biol Aviakosm Med, 1987, 21(1):34-37.

[29] Soroko SI, Aldasheva AA. Individual adaptation strategy under extreme environmental conditions in humans[J]. Fiziol Cheloveka,2012, 38(6):78-86.

基本信息:

DOI:10.16289/j.cnki.1002-0837.2025.02004

中图分类号:V527;R852

引用信息:

[1]张晴,聂嘉辰,孙超等.低压环境下典型体力作业对人体局部热生理影响的研究[J].航天医学与医学工程,2025,36(02):107-111.DOI:10.16289/j.cnki.1002-0837.2025.02004.

基金信息:

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文