nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 03, v.36 189-198
中国空间站航天医学实验领域发展展望
基金项目(Foundation): 载人航天工程航天医学实验领域项目; 国家重点研发计划项目(2022YFA1104302)
邮箱(Email): yinghuidd@vip.sina.com;
DOI: 10.16289/j.cnki.1002-0837.2025.03001
摘要:

航天医学作为保障载人航天任务中航天员安全、健康与高效工作的综合性学科,聚焦于解析太空极端环境对人体多系统生理效应的深层机制及防护策略。随着中国空间站转入应用与发展阶段,航天医学实验作为空间应用的重要领域,面临重大的机遇和挑战。本文从平台体系建设、新技术利用和科学发现等方面阐述了航天医学实验领域的国际发展态势和我国相关领域的进展,介绍了中国空间站应用与发展工程航天医学实验领域的工程布局、指导思想和重点研究方向,围绕深度解析生命在空间飞行中的适应规律、大数据和人工智能技术的应用、面临的挑战、科研组织模式等方面,进行了思考和展望,为我国航天医学实验领域的发展提供参考。

Abstract:

Space medicine, as a comprehensive discipline ensuring the safety, health, and efficient performance of astronauts during manned space missions, focuses on elucidating the underlying mechanisms of multi-system physiological effects induced by extreme space environments and developing corresponding protective strategies. With China's space program transitioning into an application and development phase, space medical experiments—a critical domain within space applications—face significant opportunities and challenges. This paper reviews the international development trend in the field of medical experiments and the progress in China from perspectives including platform system construction, utilization of novel technologies, and scientific discoveries. It further outlines the engineering framework, guiding ideology, and key research directions for space medical experiments under China's Space Station Application and Development Project. Deliberations and prospects center on the in-depth analysis of the adaptation law of life in space flight, the application of big data and artificial intelligence technology, the emerging challenges it faces, and the scientific research organization models. This work aims to provide a reference for the development of space medical experiment field in China.

参考文献

[1]吴大蔚,徐冲,李志利,等.中国空间站任务航天医学研究进展与展望[J].载人航天,2025,31(2):143-154.

[2]陈善广,邓一兵,李莹辉.航天医学工程学主要研究进展与未来展望[J].航天医学与医学工程,2018,31(2):79-89.

[3]李莹辉.航天医学研究现状与趋势[J].航天医学与医学工程,2013,26(6):421-425.

[4]Hodkinson PD, Anderton RA, Posselt BN, et al. An overview of space medicine[J]. British Journal of Anaesthesia, 2017, 119(suppl 1):I143-I153.

[5]Afshinnekoo E, Scott RT, MacKay MJ, et al. Fundamental biological features of spaceflight:advancing the field to enable deep-space Exploration[J]. Cell, 2020, 183(5):1162-1184.

[6]Stepanek J, Blue RS, Parazynski S. Space medicine in the era of civilian spaceflight[J]. New England Journal of Medicine, 2019, 380(25):1053-1060.

[7]肖毅,陈晓萍,许潇丹,等.空间脑科学研究的回顾与展望[J].中国科学:生命科学,2024,54:325-337.

[8]赵玉芬,华跃进,李一良,等.空间生命学科发展战略研究[J].空间科学学报,2024,44(3):387-399.

[9]周建平,吴季.统筹空间科学、空间技术、空间应用协调发展的思考[J].中国工程科学,2023,25(2):59-66.

[10]景海鹏,辛景民,胡伟,等.空间站:迈向太空的人类探索[J].自动化学报,2019,45(10):1799-1812.

[11]周建平.我国空间站工程总体构想[J].载人航天,2013,19(2):1-10.

[12]Sibonga J, Matsumoto T, Jones J, et al. Resistive exercise in astronauts on prolonged spaceflights provides partial protection against spaceflight-induced bone loss[J]. Bone, 2019, 128:112037.

[13]Rodrigues GA, Russomano T, Santos Oliveira E. Understanding the relationship between intracranial pressure and spaceflight associated neuro-ocular syndrome(SANS):a systematic review[J]. NPJ Microgravity,2025, 11(1):22.

[14]Jacob P, Oertlin C, Baselet B, et al. Next generation of astronauts or ESA astronaut 2.0 concept and spotlight on immunity[J]. NPJ Microgravity,2023, 9(1):51.

[15]Fu Q, Shibata S, Hastings J L, et al. Impact of prolonged spaceflight on orthostatic tolerance during ambulation and blood pressure profiles in astronauts[J]. Circulation, 2019, 140(9):729-738.

[16]Jillings S, Pechenkova E, Tomilovskaya E, et al. Prolonged microgravity induces reversible and persistent changes on human cerebral connectivity[J].Communications Biology, 2023, 6(1):46.

[17]McGregor HR, Hupfeld KE, Pasternak O, et al. Impacts of spaceflight experience on human brain structure[J].Scientific Reports, 2023, 13(1):7878.

[18]Koppelmans V, Mulavara AP, Seidler RD, et al. Cortical thickness of primary motor and vestibular brain regions predicts recovery from fall and balance directly after spaceflight[J]. Brain Structure&Function,2022, 227(6):2073-2086.

[19]Flynn-Evans EE, Rueger M, Liu AM, et al. Effectiveness of caffeine and blue-enriched light on cognitive performance and electroencephalography correlates of alertness in a spaceflight robotics simulation[J]. NPJ Microgravity, 2023, 9(1):93.

[20]Stefani O, Freyburger M, Veitz S, et al. Changing color and intensity of LED lighting across the day impacts on circadian melatonin rhythms and sleep in healthy men[J]. Journal of Pineal Research, 2021, 70(3):e12714.

[21]Vinken M. Hepatology in space:effects of spaceflight and simulated microgravity on the liver[J]. Liver International, 2022, 42:2599-2606.

[22]van den Nieuwenhof DWA, Moroni L, Chou J, et al. Cellular response in three-dimensional spheroids and tissues exposed to real and simulated microgravity:a narrative review[J]. NPJ Microgravity, 2024,10(1):102.

[23]Barrila J, Sarker SF, Hansmeier N, et al. Evaluating the effect of spaceflight on the host-pathogen interaction between human intestinal epithelial cells and Salmonella Typhimurium[J]. NPJ Microgravity, 2021, 7(1):9.

[24]Yoshida K, Hada M, Hayashi M, et al. Transcriptome analysis by RNA sequencing of mouse embryonic stem cells stocked on international space station for 1584 days in frozen state after culture on the ground[J].International Journal of Molecular Sciences, 2024, 25:(6):3283.

[25]Urbaniak C, Wong S, Tighe S, et al. Validating an automated nucleic acid extraction device for omics in space using whole cell microbial reference standards[J]. Frontiers in Microbiology, 2020, 11:1909.

[26]Miller RWV, Calaway KM. Crucian BE. Health one demonstration aboard ISS:a microfluidic bioanalyzer based on sheath/hydrodynamic focusing flow cytometry[EB/OL].(2023-01-23)[2025-06-19]. https://ntrs.nasa.gov/citations/20230001079.

[27]Misquitta K, Miller BM, Malecek K, et al. A fluorescence viewer for rapid molecular assay readout in space and low-resource terrestrial environments[J]. Public Library of Science One, 2024, 19(3):e0291158.

[28]Ruben DeLeon PC, Bill Toscano. Wearable biosensor monitor to support autonomous crew health and performance[EB/OL].(2020-03-16)[2025-06-19]. https://ntrs.nasa.gov/api/citations/20190000238/downloads/20190000238.pdf.

[29]Cornelius R, Frank J. International space station(ISS)payload autonomous operations past, present and future[EB/OL].(2019-08-23)[2025-06-19]. https://ntrs.nasa.gov/api/citations/20190000222/downloads/20190000222.pdf.

[30]De Parolis MN, Rippa G, Chegancas J, et al. MELFI ready for science:ESA’s-80°C freezer begins work in space[J]. Esa Bulletin-European Space Agency, 2006, 128(128):26-31.

[31]Yoshida K, Hada M, Kizu A, et al. Comparison of biological measurement and physical estimates of space radiation in the International Space Station[J]. Heliyon, 2022, 8(8):e10266.

[32]Ostheim P, Tichy A, Sirak I, et al. Overcoming challenges in human saliva gene expression measurements[J]. Scientific Reports, 2020,10(1):11147.

[33]Imster E. Why NASA sent tiny water bears into space[EB/OL].(2021-10-04)[2025-06-19]. https://earthsky.org/space/water-bears-tardigradesinto-space-iss-experiment/.

[34]Howell E. These tiny indestructible tardigrades will reveal how to survive in extremes of space[EB/OL].(2021-12-09)[2025-06-19].https://wwwspacecom/tardigrades-on-space-station-extreme-survival.

[35]Mu X, He W, Rivera VAM, et al. Small tissue chips with big opportunities for space medicine[J]. Life Sciences in Space Research, 2022,35:150-157.

[36]王小雪,李飞.空间生物医学研究中的人体器官芯片研究进展[J].载人航天,2021,27(2):252-261.

[37]Low LA, Giulianotti MA. Tissue chips in space:modeling human diseases in microgravity[J]. Pharmaceutical Research, 2019, 37(1):8.

[38]Yau A, Wang Z, Ponthempilly N, et al. Biosensor integrated tissue chips and their applications on Earth and in space[J]. Biosensors&Bioelectronics, 2023, 222:114820.

[39]杨芬,李莹辉,丁柏,等.空间飞行条件下心肌细胞发生功能减退与微管解聚[J].科学通报,2008,53(5):561-567.

[40]中国载人航天工程办公室.中国空间站科学实验资源手册[EB/OL].(2019-04-23)[2025-06-19]. https://csu.cas.cn/gb/201905/P020190507639578655422.pdf.

[41]谭映军,赵飞,王春艳,等.空间站多功能细胞自动培养装置研制与应用[J].载人航天,2023,29(4):464-469.

[42]Xie M, Tian Q, Wang G, et al. Breakthrough in enclosed aquatic ecosystems in space:supporting zebrafish survival for 43 days[J]. The Innovation, 2024, 5(6):100711.

[43]Yang Q, Zhong R, Chang W, et al. WormSpace mu-TAS enabling automated on-chip multi-strain culturing and multi-function imaging of Caenorhabditis elegans at the single-worm level on the China Space Station[J]. Lab on a Chip, 2024, 24(14):3388-3402.

[44]Kong X, Qin Y, Pei W, et al. Recent progresses on space life science research in China[J]. Life Sciences in Space Research, 2024, 43:35-42.

[45]中国载人航天工程办公室.中国空间站科学研究与应用进展报告[EB/OL].(2024-12-30)[2025-06-19]. https://www.cmse.gov.cn/xwzx/202412/W020241231661310955564.pdf.

[46]Yidong G, Ming G, Guangheng Z, et al. Recent progress in space science and applications on Chinese Space Station in 2022-2024[J].Chinese Journal of Space Science, 2024, 44(4):607-621.

[47]Bai D, Zhaoxia L, Ke L, et al. Progress of Space Medicine Research in China[J]. Chinese Journal of Space Science, 2020, 40(5):920-927.

[48]Ma C, Duan X, Lei X. 3D cell culture model:from ground experiment to microgravity study[J]. Frontiers in Bioengineering and Biotechnology,2023, 11:1136583.

[49]Shi K, Yang H, Zhang W, et al. Research on a new multifunctional cell sample automatic culture device for use in the Chinese Space Station[J].Aerospace, 2025, 12(2):90.

[50]Li Q, Wang C, Li X, et al. Epidermis-on-a-chip system to develop skin barrier and melanin mimicking model[J]. Journal of Tissue Engineering,2023, 14:20417314231168529.

[51]Han X, Qu L, Yu M, et al. Thiamine-modified metabolic reprogramming of human pluripotent stem cell-derived cardiomyocyte under space microgravity[J]. Signal Transduction and Targeted Therapy, 2024,9(1):86.

[52]Wang L, Chen Z, Xu Z, et al. A new approach of using organ-on-a-chip and fluid-structure interaction modeling to investigate biomechanical characteristics in tissue-engineered blood vessels[J]. Front Physiol,2023, 14:1210826.

[53]Du X, Chen Z, Li Q, et al. Organoids revealed:morphological analysis of the profound next generation in-vitro model with artificial intelligence[J].Bio-Design and Manufacturing, 2023, 6(3):319-339.

[54]Zhang P, Yan J, Liu Z, et al. Extreme conditions affect neuronal oscillations of cerebral cortices in humans in the China Space Station and on Earth[J]. Bio-Design and Manufacturing, 2022, 5(1):1041.

[55]Ke Y, Jiang T, Liu S, et al. Cross-task consistency of electroencephalographybased mental workload indicators:comparisons between power spectral density and task-irrelevant auditory event-related potentials[J]. Frontiers in Neuroscience, 2021, 15:703139.

[56]Yin Y, Chen S, Song T, et al. Cognitive load moderates the effects of total sleep deprivation on working memory:evidence from event-related potentials[J]. Brain Sciences, 2023, 13(6):898.

[57]Garrett-Bakelman FE, Darshi M, Green SJ, et al. The NASA twins study:a multidimensional analysis of a year-long human spaceflight[J].Science, 2019, 364(6436):eaau8650.

[58]Waisberg E, Ong J, Kamran SA, et al. Transfer learning as an AI-based solution to address limited datasets in space medicine[J]. Life Sciences in Space Research, 2023, 36:36-38.

[59]Scott JM, Stoudemire J, Dolan L, et al. Leveraging spaceflight to advance cardiovascular research on earth[J]. Circulation Research, 2022,130(6):942-957.

[60]Blazeski A, Garcia-Cardena G, Kamm RD. Advancing cardiac organoid engineering through application of biophysical forces[J]. IEEE Reviews in Biomedical Engineering, 2024,18:211-230.

[61]Pletcher DL, Choi SY, Ronca AE, et al. Advances in rodent research missions on the International Space Station[EB/OL].(2016-07-12)[2025-06-19]. https://ntrs.nasa.gov/api/citations/20160010579/downloads/20160010579.pdf.

[62]Li J, Liu F, Zhang T. Research progress of space mice flight payload[J].Chinese Journal of Space Science, 2021, 41:445-456.

[63]Scott RT, Sanders LM, Antonsen EL, et al. Biomonitoring and precision health in deep space supported by artificial intelligence[J]. Nature Machine Intelligence, 2023, 5(3):196-207.

[64]Sanders LM, Scott RT, Yang JH, et al. Biological research and self-driving labs in deep space supported by artificial intelligence[J].Nature Machine Intelligence, 2023, 5:208-219.

[65]Ong J, Waisberg E, Masalkhi M, et al. Artificial intelligence frameworks to detect and investigate the pathophysiology of spaceflight associated neuro-ocular syndrome(SANS)[J]. Brain Sciencesences, 2023,13(8):1148.

[66]Cheung HC, De Louche C, Komorowski M. Artificial intelligence applications in space medicine[J]. Aerospace Medicine and Human Performance,2023, 94(8):610-622.

[67]Waisberg E, Ong J, Paladugu P, et al. Challenges of artificial intelligence in space medicine[J]. Space-Science&Technology, 2022, 2022:586-593.

[68]Wu F, Du H, Overbey E, et al. Single-cell analysis identifies conserved features of immune dysfunction in simulated microgravity and spaceflight[J].Nature Communications, 2024, 15(1):4795.

[69]Ilangovan H, Kothiyal P, Hoadley KA, et al. Harmonizing heterogeneous transcriptomics datasets for machine learning-based analysis to identify spaceflown murine liver-specific changes[J]. NPJ Microgravity, 2024,10:61.

[70]Kamran SA, Hossain KF, Ong J, et al. SANS-CNN:an automated machine learning technique for spaceflight associated neuro-ocular syndrome with astronaut imaging data[J]. NPJ Microgravity, 2024,10(1):40.

[71]Waisberg E, Ong J, Masalkhi M, et al. Generative pre-trained transformers(GPT)and space health:a potential frontier in astronaut health during exploration missions[J]. Prehospital and Disaster Medicine, 2023,38(4):532-536.

[72]Li K, Desai R, Scott R T, et al. Explainable machine learning identifies multi-omics signatures of muscle response to spaceflight in mice[J].NPJ Microgravity, 2023, 9(1):682-688.

[73]Desai RI, Kangas BD, Luc OT, et al. Complex 33-beam simulated galactic cosmic radiation exposure impacts cognitive function and prefrontal cortex neurotransmitter networks in male mice[J]. Nature Communications, 2023, 14(1):7779.

[74]Pereira TD, Tabris N, Matsliah A, et al. SLEAP:a deep learning system for multi-animal pose tracking[J]. Nature Methods, 2022, 19(4):486-495.

[75]Ong J, Tavakkoli A, Zaman N, et al. Terrestrial health applications of visual assessment technology and machine learning in spaceflight associated neuro-ocular syndrome[J]. NPJ Microgravity, 2022, 8(1):37.

[76]Manian V, Orozco-Sandoval J, Diaz-Martinez V. An integrative network science and artificial intelligence drug repurposing approach for muscle atrophy in spaceflight microgravity[J]. Frontiers in Cell and Developmental Biology, 2021, 9:732370.

[77]Dunn TW, Marshall JD, Severson KS, et al. Geometric deep learning enables 3D kinematic profiling across species and environments[J].Nature Methods, 2021, 18(5):564-573.

[78]Ranaldi L, Pucci G. Knowing knowledge:epistemological study of knowledge in transformers[J]. Applied Sciences, 2023, 13:677.

基本信息:

DOI:10.16289/j.cnki.1002-0837.2025.03001

中图分类号:R851

引用信息:

[1]李莹辉,刘朝霞,曲丽娜等.中国空间站航天医学实验领域发展展望[J].航天医学与医学工程,2025,36(03):189-198.DOI:10.16289/j.cnki.1002-0837.2025.03001.

基金信息:

载人航天工程航天医学实验领域项目; 国家重点研发计划项目(2022YFA1104302)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文