4 | 0 | 9 |
下载次数 | 被引频次 | 阅读次数 |
目的 探究增大弹射座椅靠背角度后对不同体型飞行员体压分布的影响,为弹射座椅的设计、飞行训练,以及制订缓解肌肉疲劳的策略提供依据。方法 将战斗机男性飞行员按体重指数(BMI)分为正常体型组和超重组,利用体压分布测量系统分别测试20°、33°两种座椅靠背角度下共41名飞行员坐姿压力分布。分析不同座椅靠背角度对坐姿舒适性的影响。结果 不同座椅靠背角度下,不同体型飞行员体压分布差异具有统计学意义。相比20°座椅,33°座椅条件下坐垫接触面积更大[F(1,78)=40.281,P<0.001],平均压力及平均压力梯度更小[F(1,78)=32.030,P<0.001;F(1,78)=12.594,P<0.001],背靠的平均压力梯度、最大压力及最大压力梯度均明显减小,差异具有统计学意义[F(1,78)=10.516,P=0.002;F(1,78)=26.803,P<0.001;F(1,78)=4.918,P=0.029)]。此外,BMI超重者与坐垫的接触面积[F(1,78)=21.038,P<0.001]以及背靠的接触面积[F(1,78)=8.301,P=0.005]均明显大于正常体重组。角度和BMI未观察到显著交互作用。结论 在弹射座椅靠背角度更大时,平均压力及平均压力分布梯度降低,人体压力分布更均匀,舒适性更高,不同体型群体在不同弹射座椅角度下的坐垫与背靠压力分布差异可为座椅的适体性设计提供重要依据。
Abstract:Objective To investigate the effects of increasing the ejection seat backrest angle on the body pressure distribution of pilots of different body types, and to provide a basis for the design of ejection seats, flight training, and the development of strategies to alleviate muscle fatigue. Methods Male fighter pilots were divided into normal and overweight groups according to their body mass index(BMI), and a total of 40 pilots were tested for the distribution of sitting pressure under the two seat inclination angles of 20°and 33°by using the body pressure distribution measurement system. The effects of different seat inclination angles on sitting comfort were also analyzed. Results The pressure distributions of pilots with different body types were significantly different at different seat inclination angles. Compared with the 20°seat, the 33°seat condition had a larger cushion contact area [F(1,78) = 40.281, P <0.001], a smaller average pressure and average pressure gradient[F(1,78) =32.030, P <0.001; F(1,78) = 12.594, P <0.001], and significantly reduced average, maximum pressure, and maximal pressure gradients for the backrest [F(1,78)=10.516, P =0.002; F(1,78) =26.803, P <0.001; F(1,78)=4.918, P = 0.029, respectively]. In addition, overweight individuals with BMI had a notable increase in the cushion contact area [F(1,78) =21.038, P <0.001] and the backrest contact area [F(1,78)=8.301, P =0.005]. No significant interaction was observed for angle and BMI. Conclusion An increased seat inclination angle results in a more uniform distribution of pressure across the human body, thereby increasing comfort. Moreover, the disparities in pressure and backrest distribution across disparate body types at varying seat angles provide a vital foundation for the optimized design of seating.
[1]马阳光,张大伟,上官磊,等.不同机种飞行员颈腰痛现况调查及危险因素分析[J].空军医学杂志,2021,37(6):465-468+480.
[2]李剑荣,吴立红,陈志刚,等.飞行人员腰痛的流行病学特征及与核心力量相关性的横断面研究[J].中国疗养医学,2024,33(11):1-6.
[3]苏胜.基于舒适度的休息性座椅相关角度分析[J].包装工程,2010,31(22):25-29.
[4]莫明珠,崔文博,冯星,等.弹射座椅靠背角调节分析[J].飞机设计,2024,44(2):24-28.
[5]Looze MPD, Kuijt-Evers LFM , Dien JV. Sitting comfort and discomfort and the relationships withobjective measures[J]. Ergonomics, 2003(10):985-997.
[6]彭巧朦.主要座椅参数及身体质量指数对座椅舒适性的影响研究[D].雅安:四川农业大学,2020.
[7]霍笑,孙文磊,陶庆,等.基于坐姿分析的座椅舒适度测试与评价[J].工程设计学报,2017,24(3):286-294.
[8]Zemp R, Taylor WR. Seat pan and backrest pressure distribution while sitting in office chairs[J]. Applied Ergonomics, 2016, 53:1-9.
[9]Caballero-Bruno I, Wohllebe T, Topfer D, et al. The effect of seating recline on sleep quality, comfort and pressure distribution in moving autonomous vehicles[J]. Applied Ergonomics, 2022, 105:103844.
[10]Yao X, Ping Y, Song Y, et al. Sitting comfort in an aircraft seat with different seat inclination angles[J]. International Journal of Industrial Ergonomics, 2023:96.
[11]Caballero-Bruno I, Lingelbach K, Wohllebe T, et al. Sleep quality and comfort in fully automated vehicles:a comparison of two seat configurations[J]. Applied Ergonomics, 2024,114:104137.
[12]胡玲玲,林作新,张继雷.不同体型对象的座面体压分布探讨[J].家具与室内装饰,2015,(6):92-95.
[13]郭勇,陈玉霞,申利明.基于体压分布的沙发靠背高度对坐姿舒适性的影响[J].安徽农业大学学报,2011,38(1):131-134.
基本信息:
DOI:10.16289/j.cnki.1002-0837.2025.03005
中图分类号:V244.212;V323
引用信息:
[1]郝梦婷,陈园园,马晓莉等.增大弹射座椅靠背角度对提高飞行员坐姿舒适度影响的研究[J].航天医学与医学工程,2025,36(03):220-224.DOI:10.16289/j.cnki.1002-0837.2025.03005.
基金信息: