14 | 0 | 10 |
下载次数 | 被引频次 | 阅读次数 |
碳化硅滑动轴承的长寿命和高可靠性对于航天器动力装置长期正常工作至关重要。针对某输送泵滑动轴承组合体在使用过程中出现破裂现象,本文从受力特性和温度膨胀效应角度进行分析,提出一种基于温度系数补偿的结构优化设计方案。研究表明,轴承破裂的主要原因是温升条件下轴承与金属转子存在膨胀系数差异,导致轴承轴向松动。此外,轴承与销钉之间的间隙及摩擦副润滑不稳定,进一步加剧了轴承的失速和销钉撞击,最终引发裂纹和局部崩裂。通过优化轴承结构并采用橡胶垫进行扭矩传递,可成功解决这一问题。改进后的结构在台架试验中表现出高可靠性和稳定性,为类似极端工况下的轴承设计提供了重要的理论和技术参考。
Abstract:The long service life and high reliability of SiC sliding bearings are crucial for the long-term normal operation of aerospace power equipment. In response to the fracture phenomenon observed in the sliding bearing assembly of a certain delivery pump during operation, this paper analyzes the issue from the perspectives of stress characteristics and thermal expansion effects, proposing a structural optimization design method based on temperature coefficient compensation. The research indicates that the primary cause of bearing fracture is the difference in thermal expansion coefficients between the bearing and the metal rotor under elevated temperatures, leading to axial loosening of the bearing. Additionally, the gap between the bearing and the pin, combined with unstable lubrication of the friction pair, exacerbates bearing stalling and pin impact, ultimately causing cracks and localized chipping. By optimizing the bearing structure and employing a rubber pad for torque transmission, this issue has been successfully resolved. The improved structure demonstrated high reliability and stability in bench tests, providing important theoretical and technical references for the design of bearings under similar extreme operating conditions.
[1]丁平,孙民政,杨松林,等.空间站尿处理装置机械密封结构设计与试验研究[J].航天医学与医学工程,2024,35(6):341-345.
[2]Carter L. Status of the regenerative ECLS water recovery system[R/OL]. 40th International Conference on Environmental Systems.(2010-07-16)[2024-10-23]. https://ntrs.nasa.gov/citations/20100033089.
[3]Dellacorte C, Howard S. Performance of small bore 60NiTi hybrid ball bearings:preliminary life test results[R/OL].STLE Tribology Frontiers Conference.(2016-11-15)[2024-10-24]. https://ntrs.nasa.gov/citations/20170004098.
[4]张峻宁,张培林,陈彦龙,等.基于摩擦信号的滑动轴承接触摩擦故障的状态监测[J].振动与冲击,2016,35(3):68-73.
[5]顾广溪,郭垠吴,王峥嵘.间隙比对燃油泵滑动轴承承载特性的影响分析[J].机床与液压,2022,50(24):142-147.
[6]李超,马庆镇,李连升,等.滑动轴承动压特性的影响因素研究[J].润滑与密封,2023,48(10):182-189.
[7]苗新明,郭红,吴培飙,等.冲击载荷下动静压轴承特性变化分析[J].润滑与密封,2024,49(10):55-61.
[8]尤静辉,范正天.立式高速泵止推滑动轴承设计研究[J].设备管理与维修,2023(21):29-30.
[9]陈立,李志慧,陈国钦,等. 45%SiCp/Al复合材料的微动磨损试验设计与验证[J].宇航学报,2020,41(12):1588-1593.
[10]Griffith AA. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society of London A, 1920, 221:163-198.
[11]龚江宏.陶瓷材料随行断裂的显微结构效应[J].现代技术陶瓷,2012,42(5/6):287-428.
[12]吕文银.陶瓷材料压缩破坏的数值模拟[D].宁波:宁波大学,2017.
[13]李冠姝. SiC基复合材料的制备及其高温力学性能研究[D].哈尔滨:哈尔滨工业大学,2015.
基本信息:
DOI:10.16289/j.cnki.1002-0837.2025.03010
中图分类号:V467
引用信息:
[1]魏春梅,王曦,李英斌等.航天用水基滑动轴承故障分析及结构改进[J].航天医学与医学工程,2025,36(03):246-249.DOI:10.16289/j.cnki.1002-0837.2025.03010.
基金信息: