11 | 0 | 4 |
下载次数 | 被引频次 | 阅读次数 |
在地面环境中,通过紫外辐照对模拟月尘进行充电,可定量研究其在空间环境中的充放电规律。然而,由于真空和粉尘扰动等因素的影响,月尘的充放电过程难以通过接触方式实现精确测量。因此,本文基于振动电容原理,设计并构建了一套适用于真空环境的非接触式表面电位原位测量系统。该系统结合移动平均和计算标准差方法对数据进行筛选,并引入加权KNN算法对缺失或异常数据进行预测与补偿,从而提升了测量精度与稳定性。选取TYII-2和CLRS-1A两种模拟月尘样品,在紫外辐照条件下开展充放电实验,通过搭载振动电容传感器的原位运动机构实时获取表面电位分布情况。结果表明,不同粒径分布的样品在充电响应和耗散特性方面存在显著差异。
Abstract:In ground-based experiments, ultraviolet irradiation is used to charge simulated lunar dust, aiming to quantitatively study its charging and discharging behavior in space environments. However, due to factors such as vacuum and dust disturbances, the charging and discharging processes of lunar dust are difficult to measure accurately through contact methods. Therefore, this paper designs and constructs a non-contact, in-situ surface potential measurement system based on the principle of vibrating capacitance, suitable for vacuum environments. The system combines moving average and standard deviation methods for data filtering and introduces a weighted KNN algorithm to predict and compensate for missing or anomalous data, thereby improving measurement accuracy and stability. Two typical simulated lunar dust samples, TYII-2 and CLRS-1A, were selected for charging and discharging experiments under ultraviolet irradiation. The surface potential distribution was obtained in real-time using an in-situ motion mechanism equipped with a vibrating capacitance sensor. The results show significant differences in the charging response and dissipation characteristics of the samples with different particle size distributions.
[1] Stubbs TJ, Vondrak RR, Farrell WM. A dynamic fountain model for lunar dust[J]. Advances in Space Research, 2006, 37(1):59-66.
[2] Freeman JW, Ibrahim M. Lunar electric fields, surface potential and associated plasma sheaths[J]. Then Moon, 1975(14):103-114.
[3]薛丹,刘金远,李书翰.月表尘埃颗粒带电的机理及应用研究[J].物理学报,2018,67(13):135201.
[4] Colwell JE, Batiste S, Horanyi M, et al. Lunar surface:dust dynamics and regolith mechanics[J]. Reviews of Geophysics, 2007, 45(2):1-26.
[5] NASA Technical Reports Server. The effects of lunar dust on EVA systems during the Apollo missions[R/OL].(2013-08-23)[2024-08-03]. https://ntrs.nasa.gov/citations/20070021819.
[6] Zakharov AV, Zelenyi LM, Popel SI. Lunar dust:properties and potential hazards[J]. Solar System Research, 2020, 54:455-476.
[7]哈尔滨工业大学.一种月表多源辐照模拟月尘充电试验方法:CN202310398543.2[P]. 2023-07-25.
[8]孙浩,沈志刚,张晓静,等.模拟月尘特性与模拟月尘研制现状[J].载人航天,2015,21(6):642-652.
[9]孙浩,高海洋,沈志刚,等.模拟月尘BHLD20改进研究[J].载人航天,2018,24(5):643-648.
[10]唐红,张森森,李雄耀,等. CLDS-i模拟月尘的基本性质及应用前景[J].载人航天,2017,23(3):118-122.
[11]贺新星,肖龙,黄俊,等.模拟月壤研究进展及CUG-1A模拟月壤[J].地质科技情报,2011,30(4):137-142.
[12]黄晗,李建桥,陈百超,等.着陆器足垫冲击特性模型试验[J].吉林大学学报,2017,47(4):1194-1200.
[13]刘志远,于娜,柴寿臣,等.振动电容式静电传感器设计[J].传感器与微系统,2010,29(5):116-124.
[14] Li CL, Hu H, Yang MF, et al. Characteristics of the lunar samples returned by the Chang'E-5 mission[J]. National Science Review, 2022,9(02):21-33.
[15] Hubbard N, Meyer C, Gast PW, et al. The composition and derivation of Apollo 12 soils[J]. Earth and Planetary Science Letters, 1971, 10(3):341-350.
基本信息:
DOI:10.16289/j.cnki.1002-0837.2025.02011
中图分类号:V416.5
引用信息:
[1]曹礼勇,闫继宏,琚丹丹等.紫外辐照下模拟月尘的表面电位原位测量方法[J].航天医学与医学工程,2025,36(02):148-151.DOI:10.16289/j.cnki.1002-0837.2025.02011.
基金信息: