人因工程全国重点实验室;清华大学工业工程系;浙江大学心理科学研究中心;中国航天员科研训练中心;
“四特”(特殊环境、特殊任务、特殊装备和特殊人员)条件下的复杂人机紧耦合系统因其人在环、人机交互频繁、人机相互影响大等特征,使人因相关的安全风险突出且具有典型性。本文结合文献分析、事故案例调研和工程实践总结,阐述了复杂人机紧耦合系统的特征,明确了人因安全的基本定义,包括研究对象、内容和方法,并从系统研制全生命周期的视角提出了人因安全问题的系统性分析框架,进而提出了人因安全相关假说和基本科学问题。
116 | 0 | 35 |
下载次数 | 被引频次 | 阅读次数 |
[1] Kandemir C, Celik M. A human reliability assessment of marine engineering students through engine room simulator technology[J].Simulation&Gaming, 2021, 52(5):635-649.
[2] Liu J, Aydin M, Akyuz E, et al. Prediction of human–machine interface(HMI)operational errors for maritime autonomous surface ships(MASS)[J]. Journal of Marine Science and Technology, 2022, 27(1):293-306.
[3]陈善广,李志忠,葛列众,等.人因工程研究进展及发展建议[J].中国科学基金, 2021, 35(02):203-212.
[4] Rasmussen J. On the structure of knowledge—a morphology of mental models in a man-machine system context[M]. Roskilde:Ris?National Laboratory,1979.
[5] O’Hara J, Stubler W, Wachtel J. Methodological issues in the validation of complex human-machine systems[R]. New York:Brookhaven National Lab, 1995.
[6] Kruijff GJM, Kruijff-KorbayováI, Keshavdas S, et al. Designing,developing, and deploying systems to support human–robot teams in disaster response[J]. Advanced Robotics, 2014, 28(23):1547-1570.
[7]张大为.控制理论发展历程的简要回顾[J].控制工程,2006,(S1):97-100.
[8] Stanton, NA. Human factors in maritime operations:a case study of shipboard command and control[J]. Ergonomics, 2016, 59(6):853-863.
[9] FAA. Preliminary summary of the FAA’s review of the boeing 737MAX[R]. Washington, DC:Federal Aviation Administration, 2020.
[10] Reason J. Human error[M]. Cambridge:Cambridge university press,1990.
[11] Norman DA. The psychology of everyday things[M]. New York:Basic books, 1988.
[12] Boring RL, Rasmussen M. GOMS-HRA:a method for treating subtasks in dynamic human reliability analysis[C]//Proceedings of the2016 European Safety and Reliability Conference. Glasgow:CRC Press/Balkema, 2016:956-963.
[13] Sanders MS, McCormick EJ. Human factors in engineering and design[M]. New York:McGraw-Hill, 1993.
[14] Reason J. Managing the risks of organizational accidents[M].London:Routledge, 2016.
[15] Leveson NG. Engineering a safer world:systems thinking applied to safety(engineering systems)[M]. Massachusetts:MIT Press Cambridge, 2011.
[16]吴超,王秉.近年安全科学研究动态及理论进展[J].安全与环境学报,18(02):588-594.
[17] Loughborough G. Sociotechnical congruence in safety-critical systems[J]. Human Factors, 2020, 62(1):89-106.
[18] Aas AL. Industrial application of human factors safety standards[S].Nor Univ Sci Technol, 2010, 17:121-134.
[19] Hollnagel E. Barriers and accident prevention[M]. Aldershot:Ashgate, 2004.
[20] Holland JH. Hidden order:How adaptation builds complexity[M].Massachusetts:Addison-Wesley, 1995.
[21] Hollnagel E, Woods DD, Leveson N. Resilience engineering:Concepts and precepts[M]. London:Ashgate Publishing, 2006.
[22] Wickens CD. Engineering psychology and human performance[M].New Jersey:Prentice Hall, 2002.
[23] He J, Li Z, Ma Y, et al. Physiological and behavioral changes of passive fatigue on drivers during on-road driving[J]. Applied Sciences,2023, 13(2):1200.
[24] Hollnagel E. Safety-Ⅰand safety-Ⅱ:the past and future of safety management[M]. Florida:CRC Press, 2018.
[25] Hollnagel E. Cognitive reliability and error analysis method(CREAM)[M]. Amsterdam:Elsevier, 1998.
[26] Li Y, He J. A review of strategies to detect fatigue and sleep problems in aviation:Insights from artificial intelligence[J]. Archives of Computational Methods in Engineering, 2024, 31(8):4655-4672.
[27] Goodfellow I, Bengio Y, Courville A, et al. Deep learning[M]. Cambridge:MIT press, 2016.
[28] Morphew E. Psychological and human factors in long duration spaceflight[J]. McGill Journal of Medicine, 2001, 6(1):74-80.
基本信息:
DOI:10.16289/j.cnki.1002-0837.2025.01001
中图分类号:R857.1
引用信息:
[1]陈善广,张宜静,李志忠等.复杂人机紧耦合系统人因安全基本科学问题[J].航天医学与医学工程,2025,36(01):1-6.DOI:10.16289/j.cnki.1002-0837.2025.01001.
基金信息:
国家自然科学基金(T2192933,T2192932,T2192931)