9 | 0 | 7 |
下载次数 | 被引频次 | 阅读次数 |
波纹结构在航天服中应用广泛,航天服通过波纹结构大变形行为实现预计的轨迹运动。由于不规则波纹管结构具有复杂性,现有研究多基于显式动力学法,缺少静力学框架下几何非线性与壳体截面厚度效应的系统性分析。本研究结合静力学与弧长法,引入线性屈曲模态缺陷,分析赋予不同壳厚度后不规则波纹管的极限弯曲行为,得出厚壳模型因几何软化效应表现出更高的表观变形容忍度的结论,并且静力学分析可以精准提取波纹间接触力的分布,为外部力载荷的反演提供基础。本研究基于静力学-弧长法引入缺陷后波纹管的变形行为,揭示了壳体截面厚度对变形路径的调控机制。
Abstract:Ripple structure is widely used in space suits, and the predicted trajectory motion is realized according to its large deformation behavior. Due to the complexity of irregular bellows structure, the existing researches are mostly based on the display dynamic method, and lack the systematic analysis of geometric nonlinearity and the effect of shell section thickness under the framework of statics. This study combines statics and arc length method(Riks), introduces linear buckling mode defects, and analyzes the ultimate bending behavior of irregular bellows with different shell thicknesses. It is concluded that the thick-shell model exhibits higher apparent deformation tolerance due to geometric softening effect, and the contact force distribution between ripples can be accurately extracted by static analysis, which provides a basis for the inversion of external force loads. The deformation mode of bellows after introducing defects based on statics-Riks is proposed, and the control mechanism of shell section thickness on deformation path is revealed.
[1]董长林,尚坤,周仕明,等.基于Abaqus的航天服波纹式肘关节有限元仿真平台开发[J].载人航天,2022,28(2):168-177.
[2] Zienkiewicz OC, Taylor RL, Zhu JZ. The finite element method:its basis and fundamentals[M]. Amsterdam:Elsevier, 2005.
[3] Ghosh S. Arbitrary Lagrangian-Eulerian finite element analysis of large deformation in contacting bodies[J]. International Journal for Numerical Methods in Engineering, 1992, 33(9):1891-1925.
[4] Heegaard JH, Curnier A. An augmented Lagrangian method for discrete large-slip contact problems[J]. International Journal for Numerical Methods in Engineering, 1993, 36(4):569-593.
[5] Laursen TA, Simo JC. A continuum-based finite element formulation for the implicit solution of multibody, large deformation-frictional contact problems[J]. International Journal for Numerical Methods in Engineering, 1993, 36(20):3451-3485.
[6]李江.基于ABAQUS的钢顶管屈曲分析[J].城市道桥与防洪,2022(12):259-261.
[7]赵佳音. Riks弧长法在压杆非线性屈曲分析中的应用[J].船舶标准化工程师,2021,54(1):67-70.
[8]陈志平,焦鹏,马赫,等.基于初始缺陷敏感性的轴压薄壁圆柱壳屈曲分析研究进展[J].机械工程学报,2022, 57(22):114-129.
[9] Hutchinson JW. Buckling of spherical shells revisited[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2016, 472(2195):20160577.
[10] Riks E. An incremental approach to the solution of snapping and buckling problems[J]. International Journal of Solids and Structures,1979, 15(7):529-551.
[11] Amazigo JC. Buckling under axial compression of long cylindrical shells with random axisymmetric imperfections[J]. Quarterly of Applied Mathematics, 1969, 26(4):537-566.
[12] Schenk CA, Schu?ller GI. Buckling analysis of cylindrical shells with random geometric imperfections[J]. International Journal of Non-Linear Mechanics, 2003, 38(7):1119-1132.
[13] Malkus DS, Cook RD, Plesha ME, et al. Concepts and applications of finite element analysis[M]. New Jersey:Wiley, 2001.
基本信息:
DOI:10.16289/j.cnki.1002-0837.2025.02007
中图分类号:V445.3
引用信息:
[1]田翔宇,郭翔鹰,张万欣等.屈曲模态缺陷与弧长法后屈曲分析下的不规则波纹管大变形机理及厚度效应的研究[J].航天医学与医学工程,2025,36(02):123-128.DOI:10.16289/j.cnki.1002-0837.2025.02007.
基金信息:
全国重点实验室基金项目(HFNKL2023WN10)