56 | 0 | 21 |
下载次数 | 被引频次 | 阅读次数 |
目的 禁食低代谢调节技术在长期载人空间飞行和地外极端环境生存中具有巨大应用潜能,深入研究禁食低代谢状态下机体能量代谢转换及新稳态的形成将为制定有效的长期禁食应用模式提供理论依据和实验数据支撑。方法 30只Sprague-Dawley(SD)大鼠随机平均分为对照组和禁食组(禁食1 d、2 d、3 d、5 d),通过血液生化检测、荧光定量聚合酶链反应以及蛋白质印迹法等方法分析不同禁食时间内大鼠体重、血生化及糖脂代谢关键基因和蛋白的表达变化。结果 长期禁食显著降低大鼠体重、血糖和甘油三酯水平;提高血酮水平,酮体取代葡萄糖成为体内主要的能源物质;整体呈现出时序性和组织特异性变化。肝脏和肾脏糖异生分别在不同禁食时间发挥重要作用;随着禁食时间的延长,肝脏糖异生水平逐渐降低,血液中游离脂肪酸含量升高,脂肪合成相关基因表达水平下降,脂肪氧化分解作用增强,酮体生成关键基因HMGCS2表达水平升高。结论 长期禁食过程中,大鼠体内存在显著的糖-酮能量供应底物的转换,且在禁食2~5 d形成以酮体供能为主的能量代谢新稳态,机体通过组织特异性地调节糖脂代谢等途径中关键基因的表达来维持低代谢状态。
Abstract:Objective Fasting hypometabolism regulation technology has broad application potential in long-term space flight and survival in extreme extraterrestrial environments. In-depth research on the substrate conversion of energy metabolism and the formation of new steady states under fasting hypometabolism will provide theoretical basis and experimental data support for formulating effective prolonged fasting application mode. Methods 30 SD rats were randomly divided into control group and fasting group(fasting for 1, 2, 3, and 5 days). Blood biochemical examination,q RT-PCR, and western blotting were performed to analyze the body weight, blood biochemistry, and expression changes of genes and proteins related to glucose and lipid metabolism during different fasting periods. Results Prolonged fasting significantly reduced the body weight, blood glucose, and triglyceride levels of rats; increased the blood ketone level, and replaced glucose as the main energy substance in the body. There are temporal and tissue-specific changes as a whole. Hepatic and renal gluconeogenesis play major roles respectively during different fasting periods. As the fasting time prolongs, the level of hepatic gluconeogenesis gradually decreases, the content of FFA in the blood increases,the expression level of genes related to fat synthesis decreases, fatty acid oxidation is enhanced, and the expression level of the key gene HMGCS2 for ketone body generation increases. Conclusion During prolonged fasting, there is a significant conversion of glucose-ketone energy supply substrates, and a new steady state of energy metabolism mainly supplied by ketone bodies is formed within 2-5 days of fasting. The body maintains a low metabolic state by regulating changes in key genes in pathways such as glucose and lipid metabolism.
[1]戴钟铨,李莹辉,杨超,等.面向未来载人星际航行的空间低代谢调节技术[J].载人航天,2021,27(3):269-275.
[2] Longo VD, Mattson MP. Fasting:molecular mechanisms and clinical applications[J]. Cell Metab, 2014, 19(2):181-192.
[3] Strilbytska O, Klishch S, Storey KB, et al. Intermittent fasting and longevity:From animal models to implication for humans[J]. Ageing Res Rev, 2024, 96:102274.
[4] Rynders CA, Thomas EA, Zaman A, et al. Effectiveness of intermittent fasting and time-restricted feeding compared to continuous energy restriction for weight loss[J]. Nutrients, 2019, 11(10):2442.
[5] Mishra A, Sobha D, Patel D, et al. Intermittent fasting in health and disease[J]. Arch Physiol Biochem, 2023, 13:1-13.
[6] Visioli F, Mucignat-Caretta C, Anile, et al. Traditional and medical applications of fasting[J]. Nutrients, 2022, 14(3):433.
[7] Ibrahim M, Ayoub D, Wasselin T, et al. Alterations in rat adipose tissue transcriptome and proteome in response to prolonged fasting[J].Biol Chem, 2020, 401(3):389-405
[8] Lowe DA, Wu N, Rohdin-Bibby L, et al. Effects of time-restricted eating on weight loss and other metabolic parameters in women and men with overweight and obesity:the TREAT randomized clinical trial[J]. JAMA Intern Med, 2020, 180(11):1491-1499.
[9] de Cabo R, Mattson MP. Effects of intermittent fasting on health, aging, and disease[J]. N Engl J Med, 2019, 381(26):2541-2551.
[10] Kolb H, Kempf K, R?hling M, et al. Ketone bodies:from enemy to friend and guardian angel[J]. BMC Med, 2021, 19(1):313.
[11] Antoni R, Johnston KL, Collins AL, et al. Effects of intermittent fasting on glucose and lipid metabolism[J]. Proc Nutr Soc, 2017, 76(3):361-368.
[12] Zhao J, Duan X, Zhang L, et al. Comparative efficacy of energy-restricted dietary interventions in overweight and obese populations:A systematic review and network meta-analysis[J]. Nurs Health Sci,2024, 26(1):e13083.
[13] Chandramouli V, Ekberg K, Schumann WC, et al. Quantifying gluconeogenesis during fasting[J]. Am J Physiol, 1997, 273(6):e1209-1215.
[14] Landau BR, Wahren J, Chandramouli V, et al. Contributions of gluconeogenesis to glucose production in the fasted state[J]. J Clin Invest,1996, 98(2):378-385.
[15] Klover PJ, Mooney RA. Hepatocytes:critical for glucose homeostasis[J]. Int Biochem Cell Biol, 2004, 36(5):753-758.
[16] Palmer BF, Clegg DJ. Starvation ketosis and the kidney[J]. Am J Nephrol, 2021, 52(6):467-478.
[17] Sahoo B, Srivastava M, Katiyar A, et al. Liver or kidney:Who has the oar in the gluconeogenesis boat and when?[J]. World J Diabetes,2023, 14(7):1049-1056.
[18] Garruti G, Baj J, Cignarelli A, et al. Hepatokines, bile acids and ketone bodies are novel hormones regulating energy homeostasis[J].Front Endocrinol(Lausanne), 2023, 14:1154561.
基本信息:
DOI:10.16289/j.cnki.1002-0837.2025.01006
中图分类号:R852
引用信息:
[1]隋修锟,吴峰,姜思羽等.禁食低代谢状态下大鼠能量代谢底物变化规律的研究[J].航天医学与医学工程,2025,36(01):32-37+42.DOI:10.16289/j.cnki.1002-0837.2025.01006.
基金信息:
飞天基金项目(2202SY54B0506); 中国航天员科研训练中心航天医学全国重点实验室自主研究项目(SKL2024J03)