1,841 | 38 | 40 |
下载次数 | 被引频次 | 阅读次数 |
目的使用眼动仪进行疲劳检测。方法通过对眼动仪瞳孔模块输出视频的图像处理,推断瞳孔的 遮闭状态,计算出用于疲劳判定的眼睑闭合症值(PERCLOS)。结果可有效地得到被试者的疲劳状态。 结论该方法扩充了眼动仪的功能,可以方便地用于工作状态下的脱机与在线疲劳检测。
Abstract:Objective To detect fatigue using eye tracking system. Method The percentage of eyelid closure(PERCLOS) value was calculated using the size of the exposed pupil in vertical dimension found using the processing of image sequence output using pupil system of eye tracking system, then the PERCLOS value was used to determine the fatigue status of the subjects. Result It was found that this method was effective in estimating the fatigue status of the subjects. Conclusion It is a function expansion of eye tracking system, and it can be used conveniently in on-line or off-line fatigue detection.
[1] ZHENG Pei, SONG Zhenghe, ZHOU Yiming. Study situation and developing trend on detecting and evaluating techniques of motor driver fatigue[J]. Journal of China Agricultural University, 2001, 6(2):101-105.
[2] Eriksson M, Papanikotopoulos NP. Eye-tracking for detection of driver fatigue [C]. Intelligent Transportation System ITSC 97, IEEE Conference. Boston, Massachusetts, 1997.
[3] Grace R, Byrne VE, Bierman DM,et al. A drowsy driver detection system for heavy vehicles[C]. Digital Avionics Systems Conference. Seattke, 1998.
[4] Singh S, Papanikolopoulos NP. Monitoring driver fatigue using facial analysis techniques [C]. Intelligent Transportation Systems, IEEE/IEEJ/JSAI International Conference, Tokyo, 1999.
[5] ZHENG Pei, SONG Zhenghe, ZHOU Yiming. PER-CLOS-based recognition algorithms of motor driver fatigue[J]. Journal of China Agricultural University, 2002, 7(2):104-109.
[6] GU Haisong, Jl Qiang, ZHU Zhiwei. Active facial tracking for fatigue detection [C]. Applications of Computer Vision, 2002. (WACV2002). Proceedings of Sixth IEEE Workshop,Orlando, 2002.
[7] WANG Rongben, GUO Keyou, SHI Shuming, et al. A monitoring method of driver fatigue behavior based on machine vision[C]. Intelligent Vehicles Symposium, 2003. Proceedings. IEEE, Columbus, 2003.
[8] YUAN Xiugan, ZHUANG Damin. Ergonomics[M]. Beijing publishing House of BeiHang University, 2002. 3.
[9] David F. Dinges, Richard Grace. PERCLOS:A valid psychophysiological measure of alertness as assessed by psychomotor vigilance [EB/OL]. http://www. fmcsa. dot. gov. 2003-08-20.
[10] Kenneth R. Castleman. Digital image processing[M]. Beijing:China Publishing House of Electronics Industry, 1998. 9.
[11] Hayami T, Matsunaga K, Shidoji K, et al. Detecting drowsiness while driving by measuring eye movement -a pilot study [C]. Intelligent Transportation Systems Proceedings of The IEEE 5th International Conference, Singapore, 2002.
[12] Wierwille WW, Ellsworth LA, Wreggit SS, et al. Research on vehicle-based driver status/performance monitoring; development, validation, and refinement of algorithms for detection of driver drowsiness[EB/OL]. http://www. itsdocs. fhwa. dot. gov. 2003-08-20.
基本信息:
DOI:10.16289/j.cnki.1002-0837.2004.04.007
中图分类号:R318.6
引用信息:
[1]郭北苑,方卫宁.基于眼动仪的疲劳检测方法[J].航天医学与医学工程,2004(04):256-260.DOI:10.16289/j.cnki.1002-0837.2004.04.007.
基金信息:
铁道部科技发展计划项目(2000J043)