nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv qikanlogo popupnotification paper paperNew
2025, 05, v.36 479-485
中医药在载人航天脑保护中的应用研究进展
基金项目(Foundation): 国家自然科学基金(82371886); 天津市自然科学基金(24JCQNJC01080)
邮箱(Email): liangrong0623@tju.edu.cn;jiajia.yang@tju.edu.cn;
DOI: 10.16289/j.cnki.1002-0837.2025.05015
摘要:

近年来,随着深空探索任务的不断推进,航天员在太空中长期暴露于多种复合极端因素,如微重力、空间辐射、昼夜节律紊乱、密闭隔离等极端复合环境。这些因素极易诱发航天员脑功能异常,表现为认知功能下降、情绪障碍、睡眠障碍及神经炎症反应等。中医药以“整体调节”“辨证施治”为核心理念,具备多靶点调控、系统协调等特点,近年来在脑功能保护研究中引发广泛关注。本文系统综述了中医药及其相关技术在载人航天飞行与模拟航天环境模型中对脑功能障碍的防护应用及研究进展,探讨其作用机制与发展前景,以期为航天员脑健康防护提供参考,并为未来深空任务中的中医药精准干预与系统化防护方案的设计奠定理论基础。

Abstract:

In recent years,with the continuous advancement of deep space exploration missions,astronauts have been increasingly exposed to complex and extreme environmental factors in space,such as microgravity,space radiation,circadian rhythm disruption,and confined isolation.These conditions can easily induce brain dysfunction in astronauts,manifesting as cognitive decline,emotional disturbances,sleep disorders,and neuroinflammatory responses.Traditional Chinese Medicine(TCM),characterized by its holistic regulation and syndrome differentiation-based treatment principles,exhibits multi-target regulation and systemic coordination,and has attracted growing attention in the field of brain function protection.This study systematically reviews the protective applications and research progress of TCM and related techniques in both actual spaceflight missions and simulated space environment models against brain functional disorders.The underlying mechanisms and future prospects are discussed,with the aim of providing insights for safeguarding astronauts' brain health and laying a theoretical foundation for the precise intervention and systematic protection strategies of TCM in future deep space missions.

参考文献

[1] Strangman GE, Sipes W, Beven G. Human cognitive performance in spaceflight and analogue environments[J]. Aviation, space, and environmental medicine, 2014, 85(10):1033-1048.

[2] Van Ombergen A, Demertzi A, Tomilovskaya E, et al. The effect of spaceflight and microgravity on the human brain[J]. Journal of Neurology,2017, 264:18-22.

[3] Jones CW, Basner M, Mollicone DJ, et al. Sleep deficiency in spaceflight is associated with degraded neurobehavioral functions and elevated stress in astronauts on six-month missions aboard the International Space Station[J]. Sleep, 2022, 45(3):6.

[4] Mao XW, Pecaut M, Stanbouly S, et al. Oxidative stress, neuroinflammation,and the blood-brain barrier biomarkers on the brain response to spaceflight[J].Life Sciences in Space Research, 2024, 43:22-28.

[5]宋晨.刺五加调节肠脑轴改善辐射小鼠认知障碍[D].哈尔滨:哈尔滨工业大学,2023.

[6] Song C, Yin Y, Qin Y, et al. Acanthopanax senticosus extract alleviates radiation-induced learning and memory impairment based on neurotransmitter-gut microbiota communication[J]. CNS Neuroscience&Therapeutics, 2023, 29:129-145.

[7] Huang H, Jiang N, Zhang YW, et al. Gastrodia elata blume ameliorates circadian rhythm disorder-induced mice memory impairment[J]. Life Sciences in Space Research, 2021, 31:51-58.

[8] Zhang Y, Huang H, Yao C, et al. Fresh Gastrodia elata Blume alleviates simulated weightlessness-induced cognitive impairment by regulating inflammatory and apoptosis-related pathways[J]. Frontiers in Pharmacology,2023, 14:1173920.

[9] Chen F, Jiang N, Zhang YW, et al. Protective effect of Gastrodia elata blume ameliorates simulated weightlessness-induced cognitive impairment in mice[J]. Life Sciences in Space Research, 2023, 36:1-7.

[10] Wang Q, Zhang YL, Li YH, et al. The memory enhancement effect of Kai Xin San on cognitive deficit induced by simulated weightlessness in rats[J].Journal of Ethnopharmacology, 2016, 187:9-16.

[11]马静遥.开心散改善拟航天环境下大鼠认知障碍的作用机理研究[D].哈尔滨:哈尔滨商业大学,2014.

[12] Song C, Duan F, Ju T, et al. Eleutheroside E supplementation prevents radiation-induced cognitive impairment and activates PKA signaling via gut microbiota[J]. Communications Biology, 2022, 5(1):680.

[13] Hu J, Wang C, Li Q, et al. Lycium barbarum polysaccharide ameliorates radiation-induced brain injury by regulating gut microbiota[J]. Journal of Traditional Chinese Medical Sciences, 2023, 10(1):42-51.

[14]刘雨培,张瑛毓,范蓓,等.黄精多糖对模拟航天狭小空间诱导认知功能损伤的改善作用及机制研究[J].中国实验动物学报,2022,30(4):494-503.

[15]鲍余,陈颖,曾贵荣,等.人参总皂苷对尾吊模拟微重力大鼠学习记忆损伤和焦虑的保护作用[J].中国实验方剂学杂志,2021,27(7):49-56.

[16]吕静薇.人参皂苷Rg1和Rb1改善航天失重效应与睡眠干扰所致认知功能减退作用及机制研究[D].北京:北京协和医学院,2021.

[17] Gatti M, Palumbo R, Di Domenico A, et al. Affective health and countermeasures in long-duration space exploration[J]. Heliyon, 2022,8(5):e09414.

[18] Oluwafemi FA, Abdelbaki R, Lai JCY, et al. A review of astronaut mental health in manned missions:Potential interventions for cognitive and mental health challenges[J]. Life Sciences in Space Research,2021, 28:26-31.

[19]许腾,王艳,卢聪,等.黄花菜改善模拟微重力所致大鼠抑郁的尿液代谢组学研究(英文)[J].中国药学(英文版),2020, 29(3):176-191.

[20]武晓瑞.保元解郁方对模拟航天郁证的防治效果及作用机制研究[D].西安:中国人民解放军空军军医大学,2017.

[21] Yin Y, Wu X, Zhu Y, et al. Protective effect of Baoyuan Jieyu formula on long-term spaceflight composite stress-induced depressive-like behavior and memory deficits through regulation of Ca2+channel currents[J]. Life Sciences in Space Research, 2024, 40:135-142.

[22] Wang Q, Dong L, Wang M, et al. Dammarane sapogenins improving simulated weightlessness-induced depressive-like behaviors and cognitive dysfunction in rats[J]. Frontiers in Psychiatry, 2021, 12:638328.

[23]刘艳骄,刘征宇,陈武山.航天环境中的睡眠与睡眠障碍[J].世界睡眠医学杂志,2022,9(8):1571-1574.

[24] Flynn-Evans EE, Kirkley C, Young M, et al. Changes in performance and bio-mathematical model performance predictions during 45 days of sleep restriction in a simulated space mission[J]. Scientific Reports,2020, 10(1):15594.

[25]景晓路,刘学勇,秦海波,等.载人航天睡眠问题及其干预措施[J].空军医学杂志,2014,30(1):57-60.

[26]黄超.模拟微重力环境下NRF2对细胞节律基因振荡的调控机制研究[D].大连:大连医科大学,2021.

[27] CAO X. Research progress on the effects of microgravity and space radiation on astronauts'health and nursing measures[J]. Open Astronomy,2022, 31(1):300-309.

[28]肖迎春.黄芪注射液对急性放射性脑损伤大鼠认知能力的保护作用及其可能机制[D].福州:福建医科大学,2007.

[29] Xin N, Li Y J, Li X, et al. Dragon’s blood may have radioprotective effects in radiation-induced rat brain injury[J]. Radiation Research,2012, 178(1):75-85.

[30]陈博,李玉娟,邓玉林.龙血竭对模拟微重力大鼠的神经保护作用研究[C].中国空间科学学会空间生命专业委员会第二十届学术研讨会暨中国宇航学会航天医学工程与空间生物学专业委员会第四届学术研讨会论文集, 2014:44-44.

[31]张鹏,王海龙,马宏,等.龙血竭对辐射诱导的神经炎症的保护作用[J].生物化学与生物物理进展,2020,7(8):762-767.

[32]张林.模拟失重加辐射大鼠神经—内分泌—免疫网络的变化和太空燮理汤的作用[D].北京:北京中医药大学,2005.

[33] Zhu H, Zhang L, Qian M, et al. Microgravity versus microgravity and irradiation:investigating the change of neuroendocrine-immune system and the antagonistic effect of Traditional Chinese Medicine formula[J].BioMed Research International, 2020, 2020(1):2641324.

[34]李予蓉,谭娟,王晋,等.红芪胶囊对60Co-γ射线辐射后大鼠脑、肺、血清SOD活性和MDA含量的影响[J].陕西中医,2010,31(3):363-364.

[35]谢艳华,郭军,杨倩,等.红芪胶囊对低剂量辐射损伤小鼠的保护作用[J].现代生物医学进展,2015,15(18):452-3457.

[36]李予蓉,谭娟,徐胜龙,等.红芪胶囊对辐射损伤大鼠的药效作用研究[J].解放军药学学报,2010,26(5):400-402.

[37]刘桂芳.阿魏酸通过NLRP3炎症蛋白复合体影响辐射引起的神经炎症[D].广州:广东药科大学,2021.

[38] Lu GAN, Wang ZH, Zhang H, et al. Protective effects of shikonin on brain injury induced by carbon ion beam irradiation in mice[J].Biomedical and Environmental Sciences, 2015, 28(2):148-151.

[39]金毅然.黄芪甲苷通过NLRP3和TLR4信号通路抑制辐射诱导的脑损伤[D].兰州:西北师范大学,2019.

[40]马亮.黄芪甲苷通过PI3K/Akt信号通路保护辐射诱导的脑细胞损伤[D].兰州:兰州大学,2020.

[41] Ding Y, Jiang C, Chen L, et al. Astragaloside IV confers neuroprotection against radiation-induced neuronal senescence via the ERK pathway[J].Experimental Neurology, 2025, 386:115135.

[42] Liu X, Ding Y, Jiang C, et al. Astragaloside IV mediates radiation-induced neuronal damage through activation of BDNF-TrkB signaling[J].Phytomedicine, 2024, 132:155803.

[43]甘露,王振华,张红,等.羟基红花黄色素A对碳离子束辐照致放射性脑损伤的保护作用[J].核技术,2012,35(8):624-629.

[44] Smina TP, Joseph J, Janardhanan KK. Ganoderma lucidum total triterpenes prevent γ-radiation induced oxidative stress in Swiss albino mice in vivo[J]. Redox Report, 2016, 21(6):254-261.

[45] Putcha L, Berens KL, Marshburn TH, et al. Pharmaceutical use by US astronauts on space shuttle missions[J]. Aviation, Space, and Environmental Medicine, 1999, 70(7):705-708.

[46]骞爱荣,蔺枭,陈志浩.航天医学效应及防护[M].北京:科学出版社,2022.

[47]姜凝.我助航天筑梦太空航天圆我民生梦想[N].天津:天津日报,2024.

[48]王迎冬,陶雅文,于艺,等.航天医学问题针灸适应证穴位组库的构建思路与方法[J].航天医学与医学工程,2024,35(5):319-324.

[49]刘智,黎舒涵,李程飞,等.穴位电刺激对人体24 h头低位卧床脑电功率谱密度的影响[J].空军军医大学学报,2025,46(1):105-110.

[50]张鹤,赵国桢,汪德生,等.电针不同穴位对模拟失重效应大鼠HPA轴相关激素及神经递质的影响[J].中国针灸,2015,35(12):1275-1279.

[51]高原,孙静,李小涛,等.电针刺激内关穴对模拟失重大鼠心脑血管氧化应激的影响[J].心脏杂志,2022,34(2):210-214.

[52]刘智.模拟失重对脑功能和自主神经功能的影响及电针的防护作用研究[D].西安:中国人民解放军空军军医大学,2024.

[53]倪思铭,蒋星卓,彭拥军.调神解郁法针刺联合盐酸舍曲林片治疗卒中后抑郁:随机对照试验[J].中国针灸,2023,43(1):19-22,66.

[54]李佳,刘娇萍.针刺“神门”穴对睡眠剥夺大鼠脑电波及其认知能力的影响[J].针刺研究,2017,42(6):502-506.

[55]林仁勇,吴俊贤,张佩,等.神门穴真、假针刺对心率和心率变异性影响的比较研究[J].时珍国医国药,2012,23(3):752-754.

[56]莫玉婷,李铁,王富春.针刺神门穴治疗失眠症研究概况[J].上海针灸杂志,2016,35(6):639-641.

[57]刘琪.合谷穴刺激的脑电响应及其机制研究[D].天津:天津中医药大学,2024.

[58]许建阳,王发强,王宏,等.针刺合谷与太冲fMRI脑功能成像的比较研究[J].中国针灸,2004,(4):43-45.

[59]江依敏.基于脑血管保护探讨电针足三里改善AD神经损伤及机制[D].广州:广州中医药大学,2021.

[60]邓培颖.电针百会、足三里联合外泌体对脑缺血再灌注损伤小鼠的保护作用及炎症机制的研究[D].北京:北京协和医学院,2022.

基本信息:

DOI:10.16289/j.cnki.1002-0837.2025.05015

中图分类号:R856

引用信息:

[1]盛欣仪,孟靓辉,罗彦,等.中医药在载人航天脑保护中的应用研究进展[J].航天医学与医学工程,2025,36(05):479-485.DOI:10.16289/j.cnki.1002-0837.2025.05015.

基金信息:

国家自然科学基金(82371886); 天津市自然科学基金(24JCQNJC01080)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文